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Abstract

To protect copyrighted digital data against piracy, codes with different secure properties
such as frameproof codes, secure frameproof codes, codes with identifiable parent property (IPP
codes), traceability codes (TA codes) are introduced. In this paper, we study these codes
together with related combinatorial objects called separating and perfect hash families. We
introduce for the first time the notion of difference function families and use these difference
function families to give generalized recursive techniques that can be used for any kind of secure
codes and hash families. We show that some previous recursive techniques are special cases of
these new techniques.

1 Introduction

Codes with secure properties are used for copyright protection and piracy tracing [3, 2, 4, 5]. Since,
for instance, in broadcast encryption, the number of users corresponds to the size of the code and
the transmission bandwidth is proportional to the code length, it is desirable to construct codes
with large size but relatively small length. Recursive techniques are the most effective way to
construct large codes.

By recursive techniques, a larger code (hash family) is constructed from one or two smaller codes
(hash families). Safavi-Naini and Wang [5] provide recursive constructions of frameproof codes
and IPP codes. This technique uses a function family satisfying some special properties. Atici
et al [1] technique is for perfect hash families and Stinson et al [7] technique is for separating
hash families. These two techniques are very similar and they used difference matrices. Stinson et
al [8] technique is also for perfect hash families and separating hash families. This technique uses
difference matrices and mutually orthogonal Latin rectangles and squares. Tran van Trung and
Martirosyan [9] technique uses code concatenation method to construct a new IPP code from two
original IPP codes. They also present a recursive technique for perfect hash families.

In this paper, we generalize some of the above results using a uniformed technique. We introduce
for the first time the notion of difference function families. An (n; I, J)-difference function family
is a collection of I.J functions mapping {1,...,n} into itself that satisfy a special property. We
present two recursive constructions using difference function families. These constructions can be
used for any kind of secure codes: w-frameproof codes, w-secure frameproof codes, w-IPP codes,
w-TA codes, and for any kind of hash families: {w1,ws}-separating hash families, w-perfect hash
families.



In the first construction, with an original code of length £ and size n, under the action of an (n;n, J)-
difference function family, we obtain a new code of length £J and size n? with the same properties
as the original codes. Similarly, with an (¢,n,m)-hash family, under the action of an (n;n,J)-
difference function family, we obtain a new (£J,n2, m)-hash family with the same properties as the
original hash family. The parameter J is chosen depending on different properties of codes and
hash families. Namely, J = w + 1 is for w-frameproof, J = w? + 1 is for w-secure frameproof,
w-IPP and w-TA, J = wyws is for {wy, ws}-separating hash and J = (%) is for w-perfect hash.

In the second construction, a new code (hash family) is constructed from two existing codes (hash
families). Starting with two codes of size ni, length ¢; and size no, length ¢ with n; > n9, an
(n1;mn9, J)-difference function family of bijective functions can be used to generate a new code of
size ning, length £1J + £ with the same properties as the original codes. For different properties
of codes and hash families, similar values as in the first construction are used for the parameter J.

Importantly, we show that these two recursive techniques can be applied iteratedly, so that, for
instance in the first construction, from an original code (hash family) of length ¢ and size n,
under the actions of z difference function families, we have a code with size n, = n®* and length
L, = £J* = O(log(n,)'%82 7).

The paper is organized as follows. In section 2, we give definitions of different secure codes,
hash families, and basic relationships between them; we also introduce the notion of difference
function families. In section 3, we present our new recursive techniques. Main results are stated
in section 3.1. We give explicit constructions of difference function families in section 3.2. In
section 3.3, we state main results on iterated application of our recursive techniques. Finally, we
give the proofs of main results in section 4.

2 Definitions

In this section, we give definitions of different kinds of secure codes and hash families and discuss
basic relationships between them. We also introduce for the first time the notion of difference
function families.

2.1 Codes

Let A be an alphabet of size m. An (¢,n, m)-code T" of length £ and size n over A is a collection of
n elements, which are called codewords, of A*. Each o € Af is written in the form a = (o, ..., ay).
The matriz form of I is an n X £ matrix whose rows are codewords of T'.

For a subset X C I' and a position 1 < ¢ < £, define the projection of X on the position i as
mi(X) ={z; : z € X},

and the set of descendants of X as
V4
desc(X) = Hm(X) ={a e A’ : q; e m(X), V1 <i <1}
i=1

The set of descendants is a subset of A¢ that can be constructed by a coalition of users who have
the codewords in X. If a € desc(X) then codewords in X are called parents of a.



Let w be a positive integer. Define the w-descendant code, denoted by descy, (I"), as follows

descy(T) = U desc(X).
XCr, [ X|<w

Definition 1 Let T be an (¢,n,m)-code and let w be a positive integer.
I’ is w-frameproof if for any X C T' such that 0 < | X| < w, we have
desc(X)NT = X.

I’ is w-secure frameproof if for any X1,Xs C T such that 0 < |X;1| < w, 0 < |X3| < w and
X1 N Xy =0, we have
desc(X1) Ndesc(X3) = 0.

For two subsets X1, Xo C T, if the two projection sets m;(X1) and m;(X2) are disjoint then the
position 7 is said to separate X7 and Xo.

It follows from Definition 1 that if T" is a w-frameproof code then for any subset X of size up to w
of ' and any codeword a ¢ X, there must exist a position ¢ that separates X and {a}. Similarly, T’
is w-secure frameproof if for any two disjoint subsets X; and Xs of size up to w of I', there exists
a position ¢ that separates them.

For a, € AY, let d(a, B) denote the Hamming distance between a and 8. For a code T, let dr
denote the minimum Hamming distance of I'.

Definition 2 Let ' be an (£,n,m)-code and let w be a positive integer.

I’ is w-IPP (identifiable parent property) if for any a € descy,(I"), we have
N X # 0.

XCT, | X|<w,a€desc(X)

T is w-TA (traceability) if for any X C T such that 0 < |X| < w and for any a € desc(X), there
exists a codeword x € X such that for any y € T'\ X, we have d(a, z) < d(a,y).

A w-IPP code ensures that from a pirate word a € desc, (I") it is possible to find at least one of
its parents. Clearly, a w-TA code is w-IPP. In a w-TA code, a codeword that has the shortest
Hamming distance to the pirate word a must be one of its parents. There is a sufficient condition
on the minimum Hamming distance for a code to be w-TA.

Theorem 1 ([6]) Let T' be an (¢,n,m)-code and let w be a positive integer. If the minimum
Hamming distance dr > £ (1 — #) then T' is w-TA.

Concatenated Codes. Let I" be an (£,n,m)-code and ¥ be an (L, N,n)-code. Let A, @ denote
the alphabet sets of I" and ¥ then |@Q| = || = n. Let 2 : @ — T be the bijective function mapping
the ith symbol of @ to the ith codeword of I'. The concatenated code V[I'] over A is an (L¢, N, m)-
code defined as U[I'] = {(2(u1),...,2(ur)) : u = (u1,...,ur) € ¥}. I' is called the inner code and
U is called the outer code. Each codeword of the concatenated code ¥[I'] consists of L codewords
of the inner code I'.

Theorem 2 ([9]) LetT', ¥ be two codes with parameters (£,n,m) and (L, N,n), and w be a positive
integer. If T' and ¥ are both w-IPP then the concatenated code ¥[I'| is also w-IPP.



2.2 Hash Families

Let [n] = {1,...,n}. Assume |A| = m. An ({,n,m)-hash family # is a collection of ¢ functions
which map [n] into A. The matriz form of H is an n x £ matrix whose columns represent functions
of #; that is, the matrix entry at row 7 and column j is k() where h is the jth function of H.

For a subset X C [n] and h € H, denote h(X) = {h(z) : z € X }.

Definition 3 Let H be an (¢,n, m)-hash family and let w, w1 and wy be positive integers.
H is {wi,ws}-separating if for any X1, Xs C [n] such that 0 < |X;| < wy, 0 < |X2| < wy and
X1 N Xy =0, there exists a function h € H satisfying

h(X1) N A(X2) = 0.

H is w-perfect if for any X C [n] such that 0 < |X| < w, there ezists a function h € H whose
restriction on X 1is a one-to-one function.

A function h in Definition 3 that satisfies h(X71) N h(X3) = 0, is said to separate X; and Xo. In
the matrix form of #, the column corresponding to h is also said to separate the two sets of rows
corresponding to X; and Xo.

An (£,n,m)-code I" and an (£,n,m)-hash family H are dual of one another if they have the same
matrix form M. In this case, rows of M are codewords of I' and columns of M are functions of
‘H. From now on, we abuse the language by using the same notation I' to denote a code and its
matrix form, and H to refer to a hash family and its matrix form.

There is a close connection between frameproof, secure frameproof codes with separating hash
families, which is stated in Theorem 3.

Theorem 3 ([6]) Let ' be an (£,n,m)-code and H be an (¢,n,m)-hash family. Assuming that T'
and H are dual then

o ' is w-frameproof if and only if H is {1, w}-separating;

o I' is w-secure frameproof if and only if H is {w,w}-separating.

2.3 Difference Function Families

In this section, for the first time, we introduce the notion of difference function families. We first
give the definition of difference matrices.

Definition 4 An (n, k)-difference matrix is a k x n integer matriz D = (d; ;) such that for any
two different rows u and v, the n differences between entries on the two rows, dy 1 —dy 1, dy2 —dy2,
oy Ayp — dyp, are distinct modulo n.

Let [n]" denote the set of all functions mapping [n] into itself. If a collection of functions ® C [n]
is indexed as ® = {¢; j: 1 <i < I,1 < j < J} then ® is said to be of size I x J. If every member
function ¢; ; is of the form ¢; j(z) = = + §;; (mod n) for some constant J; ;, then @ is called
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a rotating function family, and the corresponding I x J matrix A = (4;;) is called the rotating
coefficient matriz of ®.

If all functions ¢; ; : [n] — [n] of ® are bijective then the function family @ is said to be bijective.
Rotating function families are automatically bijective.

Difference function families are defined as follows.

Definition 5 Letn, I and J be positive integers such that J > 1 and I < n. An (n;I,J)-difference
function family is a function family ® = {¢;;} C [n] ] of size T x J which satisfies the following
condition: for any j1 # jo, if $irji(T) = Ginyji (y) and diy 5y () = ¢iy,jo(y) then i1 =iz and z =y.

It is not hard to show that, for any function family ® of size I x J with J > 1, the condition on
® in the Definition 5 implies I < n. Indeed, take any 1 < 71 # jo < J and consider nl ordered
pairs (¢, (z), ¢ij,(x)) where 1 <i < T and 1 < z < n. The condition on ® implies that all these
ordered pairs are distinct. Since these ordered pairs are elements of the set [n] x [n], it follows that
nI < n?, and thus, I < n. Difference function families are generalization of difference matrices by
the following theorem.

Theorem 4 Let ® € [n][n] be a rotating function family of size n X J with the rotating coefficient
matriz A = (8; ;). Then ® is an (n;n,J)-difference function family if and only if the transpose
matriz of A is an (n,J)-difference matriz.

Proof. Suppose that @ is an (n;n, J)-difference function family, we prove that for any 1 < u # v <
J, the following differences 614 — 01,4, 024 — 02,0 -- - Onu — On,p are distinct modulo n. Indeed, if
iy — Oiy v = igu — Oin v (mod n) then &;, o — iy = 04y — diy0 = ©— 1 (mod n) for some z € [n].
Hence ¢, 4(1) = ¢4, u(x) and ¢;, (1) = ¢4, o(x). It follows that i = is.

Conversely, suppose that AT is an (n, J)-difference matrix. Assume that 1 < j; # jo < J, and
Gi1,51 (2) = bin i (V), iy jo(T) = iy 45(y), we prove that iy = iy and £ = y. Indeed, we have
¢i1,j1 (:E) - ¢i1,j2(37) = 6i1,j1 - 6i1,j2 = ¢i2,j1 (y) - ¢i2,j2 (y) = 6i27]'1 - 6i27]'2 (mOd n) Since AT is an
(n, J)-difference matrix, we must have iy = i9, and thus, z =y. =

3 Generalized Recursive Techniques

In this section, we present recursive techniques that generalize some of previous known techniques.
We construct new codes or hash families from existing codes or hash families by letting some
difference function families act on these existing codes or hash families. We prove that this action
preserves the property of codes and hash families.

Let ¢ € [n]l™, then the matrix ¢(I) is constructed as

Go(1) a1
o) = : where I'=

Gg(n) an

Consider the following two constructions.



The first construction. Let I' be an (£, n,m)-code (hash family). Let ® be an (n;n, J)-difference
function family. Then ®(T) is a matrix of size n? x £J defined as

$11(T)  ¢12(T) ... ¢14(T)
o) = : : :

01 (T) Gus) .. fns(T)

Under the action of function family ®, from a code (hash family) I" of parameters (£,n,m) we
obtain a new code (hash family) ®(T") of parameters (£J,n%,m).

The second construction. Let 'y, I'; be two codes (hash families) of parameters (£1,n1,m;)
and (€2, m9,mg) where ny > ny. Let @ be a bijective (n1;ng, J)-difference function family. Then
®(T',Ty) is a matrix of size (n1ng) X (£1J + £3) defined as

¢1’1 (Pl) ¢1’2 (Fl) . ¢1’J(F1) 1st row of T'g repeated nq times
(', T2) = : : : :
no,1(T1)  @np2(T1) ... bnys(T'1) mnoth row of I'y repeated n times
Let A; and As denote the alphabet sets of I'y and I'y, respectively. If m; < mg, by embedding A,

into Ag, we can assume A; C Ay. Similarly, if mg < my, by embedding A, into A, we can assume
Aa C A;. So the alphabet set of ®(I';,I'2) has max(mq,m2) number of symbols.

When I'; =Ty =T is a code (hash family) of parameters (¢,n,m) and ® is a bijective (n;n,J)-
difference function family then the second construction gives a new code (hash family) ®(I',T") of
parameters (£(J + 1),n%,m).

In section 3.1, we show that with certain choices of J, the two constructions will preserve properties
of the codes (hash families).

3.1 Main Results

Frameproof Codes

Theorem 5 If T is a w-frameproof (£,n,m)-code and ® is an (n;n,w + 1)-difference function
family, then ®(T) is a w-frameproof ((w + 1)£,n%,m)-code.

Theorem 6 If 'y, ['s are two w-frameproof codes of parameters (¢1,mn1,m1), (b2,n9, ms), respec-
tively, where ny > ng, and ® is a bijective (ny;no,w)-difference function family, then ®(I'1,T's) is
a w-frameproof (wly + €3, n1n9, max(my, ms))-code.

Secure Frameproof Codes

Theorem 7 IfT is a w-secure frameproof (£,n, m)-code and ® is an (n;n,w? + 1)-difference func-
tion family, then ®(T) is a w-secure frameproof ((w? + 1)£,n2, m)-code.

Theorem 8 IfT'y, 'y are two w-secure frameproof codes of parameters (€1,m1,m1), (b2,n2, m2), re-
spectively, where nq > ng, and ® is a bijective (n1;ng, w?)-difference function family, then ®(T'1,Ts)
is a w-secure frameproof (w2ly + £, n1n2, max(my, ms))-code.



IPP & TA Codes

Theorem 9 If T is a w-IPP (¢,n,m)-code and ® is an (n;n,w? + 1)-difference function family,
then ®(T) is a w-IPP ((w? + 1)¢,n%,m)-code.

Theorem 10 IfT' is a w-TA (£,n,m)-code with minimum Hamming distance dp > %E (1- #)
and ® is an (n;n, J)-difference function family, then ®(T') is a w-TA (J£,n?,m)-code.

Separating Hash Families

Theorem 11 If H is a {w1,w2}-separating (£,n,m)-hash family and ® is an (n;n,wiwy + 1)-
difference function family, then ®(H) is a {w1,ws}-separating ((wiwz + 1)£,n2,m)-hash family.

Theorem 12 If Hi, Ho are two {wi,ws}-separating hash families of parameters (€1,m1,m1),
(€2,m2,m2), respectively, where n1 > mng, and P is a bijective (ni;ng, wiwsy)-difference function
family, then ®(H1,Hs) is a {wi,ws}-separating (wiwely + L3, n1n2, max(my,ms))-hash family.

Perfect Hash Families

Theorem 13 IfH is a w-perfect (¢,n, m)-hash family and ® is an (n;n, (%) +1)-difference function
family, then ®(H) is a w-perfect (((§) + 1)€,n%, m)-hash family.

Theorem 14 If H,, Ho are two w-perfect hash families of parameters (¢1,n1,m1), (b2,n2,m2),
respectively, where n1 > na, and @ is a bijective (ni;na, (g’))—diﬁerence function family, then
D(Hq,He) is a w-perfect ((g’)& + £3,n1n2, max(my,ms))-hash family.

Comparison with Previous Constructions. By Theorem 4, a difference matrix is equivalent
to a rotating difference function family, the first recursive construction of perfect hash families by
Atici et al [1] is, therefore, a special case of Theorem 13. Similarly, the recursive construction of
separating hash families by Stinson et al [7] is a special case of Theorem 11.

Theorem 5 and Theorem 9 give better recursive constructions for frameproof codes and IPP codes
compared to constructions by Safavi-Naini and Wang [5] since they generate codes with shorter
lengths and larger sizes.

3.2 Explicit Construction of Difference Function Families

In this section, we give explicit constructions of difference function families and bijective difference
function families.

Notation. An integer-valued function p is called one-to-one modulo n if pu(z) # p(y) (mod n) for
any ¢ # y.

Theorem 15 Let n, J, t be positive integers such that J > 1 and ged(n,t) = ged(n, (J —1)!) = 1.
Let n, &, p be functions mapping [n| into Z, such that p is one-to-one modulo n. Let ® = {¢;;} C
[n]™ be a function family of size n x J constructed as ¢; j(z) = tjz + (i) +n(4) + &(z) (mod n)
then @ is an (n;n, J)-difference function family.



Proof. Suppose ¢;, j, () = ¢4, (y) and ¢;, j,() = ¢4y j,(y) for some 1 < 51 # jo < J, then
¢i1,j1('77) - ¢i2,j1(y) + ¢i2,j2(y) - ¢i1,j2('77) = t(j1 — jo)(z —y) = 0 (mod n). Since 1 < z,y <
n, 0 < |j1 —j2| < J—1 and n is coprime to ¢t and (J — 1)!, it follows that z = y. Thus,
Gi1,51 (2) — in i (y) = p(i1) — p(iz) =0 (mod n). Since 4 is one-to-one modulo n, we have i; = is.
Therefore, @ is an (n;n, J)-difference function family. =

Corollary 1 Let n be a prime. Let J, t, s be positive integers less than n and J > 1. Let n, &
be two arbitrary functions mapping [n] into Z. Let & = {¢; ;} C [n]I™ be a function family of size
n X J constructed as ¢; j(x) = tjr + si + n(j) + &(z) (mod n), then @ is an (n;n,J)-difference
function family.

The following theorem gives an explicit construction of bijective difference function families.

Theorem 16 Let n, J, t be positive integers such that J > 1 and ged(n,t) = ged(n, (J —1)!) = 1.
Let n, &, p be functions mapping [n] into Z such that £ is one-to-one modulo n. Let ® = {¢;;} C
[n]l"] be a function family of size n x J constructed as ¢; j(z) = tij + p(i) +n(j) + &(x) (mod n),
then ® is a bijective (n;n, J)-difference function family.

Proof. ® is bijective because ¢ is one-to-one modulo n. Now suppose that ¢;, j, (z) = ¢4, j, (y) and
Biy jo (T) = @iy 5y (y) for some 1 < i # jo < J, then ¢y jy (T) — Biy 5y (Y) + Bin,jo (Y) — Biy g (7) =
t(i1 — i2)(j1 — j2) = 0 (mod n). Since 1 < i1,72 < n, 0 < |j1 — jo| < J — 1 and n is coprime to ¢
and (J — 1)!, it follows that 4; = is. Thus, ¢;, j, () — ¢i, 5, (y) = &(z) —€(y) = 0 (mod n). Since
¢ is one-to-one modulo n, we have z = y. Therefore, ® is a bijective (n;n, J)-difference function
family. m

Corollary 2 Let n be a prime. Let J, t, s be positive integers less than n and J > 1. Let n, £ be
two arbitrary functions mapping [n] into Z. Let ® = {¢; ;} C [n]l™ be a function family of size nx J
constructed as ¢; j(x) = tij + sz + p(i) +n(j) (mod n), then @ is a bijective (n;n, J)-difference
Sfunction family.

3.3 Iterated Recursive Constructions

An important property of our recursive techniques is that we can apply them unlimited number of
times. To demonstrate, consider an application of Theorem 5 and Theorem 15 as follows.

Suppose we have a w-frameproof (£,7n,m)-code I'. Using Theorem 15 to construct an (n;n,w +
1)-difference function family ®1), by Theorem 5, ®1)(I') is a w-frameproof ((w + 1)¢,n2,m)-
code. Using Theorem 15 again to construct an (n?;n?,w + 1)-difference function family o) by
Theorem 5, ®2) (d(1)(I")) is a w-frameproof ((w + 1)2¢,n*, m)-code. Eventually, after z times of
doing this, we have a w-frameproof ((w + 1)?£,n?°, m)-code as stated in Theorem 17.

Theorem 17 Let n, w, z be positive integers such that gcd(n,w!) = 1. For each k =1,...,z, let
tr be a positive integer and ng, &, pr be functions mapping [anil] into Z, such that ged(n, tx) =1

. k—1
and py, is one-to-one modulo n?

For each k =1,...,2, let &) = {¢z(,k])} - [n2k_1][n2k71] be a function family of size n® " x (w+1)
constructed as ¢§§) (z) = tpjz+pe(i)+m5 () +&x (@) (mod n2""). Let T be a w-frameproof (£, n,m)-
code. Then the ((w + 1)%4,n>" ,m)-code ®&) (... (@@ (®()(T)))...) is w-frameproof.



Similarly, iteratedly applying the results in section 3.1 for w-secure frameproof codes, w-IPP codes,
w-TA codes, w-perfect hash families, {w1,ws }-separating hash families using constructions of (bi-
jective) difference function families in Theorem 15, Theorem 16, Corollary 1 and Corollary 2, we
have:

Theorem 18 If ged(n, (w?)!) = 1 then from a w-secure frameproof (£,n, m)-code it is possible to
construct a new w-secure frameproof ((w? 4+ 1)?£,n%°, m)-code for any positive integer z.

Theorem 19 If ged(n, (w?)!) = 1 then from a w-IPP ({,n,m)-code it is possible to construct a
new w-IPP ((w? 4+ 1)%£,n%°,m)-code for any positive integer z.

Theorem 20 If gcd(n, (J — 1)!) = 1 then for any positive integer z, from a w-TA (¢,n,m)-code
with minimum Hamming distance d > (ﬁ)zé (1 — L), it is possible to construct a new w-TA

w?2
(J?£,n* ,m)-code.

Theorem 21 If ged(n, (wiws)!) = 1 then from a {wy,ws}-separating (£,mn, m)-hash family it is
possible to construct a new {wy,ws }-separating ((wiwe + 1)%£,n%°,m)-hash family for any positive
integer z.

Theorem 22 If ged(n, (5)!) = 1 then from a w-perfect (£,n,m)-hash family it is possible to con-
struct a new w-perfect (((g’) +1)?4,n% ,m)-hash family for any positive integer z.

4 Proofs of Main Results

For a function family ® = {¢; ;} C [n](™ of size n x J, let & denote the following (J, n%, n)-code:

¢:51,1 <i:51,2 . 4:51,J ¢i,;(1)
~ - N q5~,- 2
B — ¢%,1 ¢?,2 ¢2.,J where ¢i,j _ Z]( )
én,l én,? s an,J (ﬁi,j (n)

Then for any (¢£,n,m)-code T', the (£J, n?,m)-code ®(I') is exactly the concatenated code $[I‘]
with T' being its inner code and @ its outer code. It follows from the definition that if ® is an
(n;n, J)-difference function family then the code ® has minimum Hamming distance dg > J — 1.
We use this observation to prove Theorem 9, Theorem 10 and Theorem 20.

Proof of Theorem 9. The corresponding (w? + 1,n% n)-code ® of the (n;n,w? + 1)-difference
function family ® has minimum Hamming distance dg > w?. Therefore, dg > (w? + 1) (1 — ﬁ),

by Theorem 1, the code 3 is w-TA, and thus, is w-IPP. Since T' is w-IPP, by Theorem 2, the
concatenated code ®[I'l = ®(T') is w-IPP. m

Proof of Theorem 10. The code ® has the minimum Hamming distance dg > J — 1. Since the
minimum Hamming distance of a concatenated code is greater than or equal to the product of the
minimum Hamming distances of its inner code and outer code, dgr) = d«S[F] > dgdr > (J—1)dr >

J¢ (1 - -%). Therefore, by Theorem 1, (J¢,n%,m)-code ®(T) is w-TA. =

w



Proof of Theorem 20. Since ged(n, (J — 1)!) = 1, as in Theorem 17, for each k = 1,..., z, there
exists an (n2k71;n2k71,J)-diﬁerence function family ®*). Let Ty = T, for each k = 1,...,z, let

Ty = d6)(y_)) = k) [Tk 1]. We will prove that the (J?£,n%", m)-code T, is w-TA.

Indeed, for each k = 1,..., 2, the code 3*) has the minimum Hamming distance dg) > J — 1.
Thus, dr,, > dgudr,_, > (J — 1)dr,_,. Therefore, dr, > (J — 1)*dp, = (J — 1)*d > J*/ (1 — ﬁ),
and by Theorem 1, (J?£,n*,m)-code T, is w-TA. m

Theorem 5 and Theorem 7 follow from Theorem 11 and Theorem 3. Theorem 6 and Theorem &
follow from Theorem 12 and Theorem 3. We now prove Theorem 11, Theorem 12, Theorem 13 and
Theorem 14.

Proof of Theorem 11. The matrix ®(#) contains n? rows divided into n blocks, each block contains
n rows. With 1 < b < n, 1<t < n, let (b,t) denote the t* row in the b** block of ®(H). If a;
denotes the it" row of # then (b,t) consists of wiws + 1 rows of H as follows

<b7 t) = (a¢b,1 (t)7 a(ﬁb,z(t)? R a¢b,w1w2+1(t))'

We prove that ®(#H) is {w1, we }-separating by contradiction. Assume that X1 = {(b1,%1),..., (by,tu)}
and X9 = {(d1, s1),. .., {(dy, Sy) } are two disjoint sets of rows of ®(H) with 1 <u <w;, 1 <v < wo
and desc(X1) Ndesc(X2) # 0.

(b1,t1) = Oy 1(t1) Oy a(t1) =+ Oy g wyt1(tr)
(b2, t2) = Oy, 1(t2) By, o(ta)  “ Loy wywyr1(t2)
X, : . . :
(ustu) = @, 1(t) Opynlte) Dy wiwgir(t)
(di,81) = Qg 1(51) Goa,a(s1) -+ Cbay awywys1(s1)
(da, s9) = Oy 1(s2) gy a(s2) + Cday wiwyt1(s2)
X, . . .
(do;s0) = oy 1(50) Coaya(se) Dby wywys1(se)

For each k, 1 < k < wyws + 1, the two sets of indices

{61 k(t1), Doy (t2)s - - 5 Doy k(tu)} and {dg, k(51), Pds k(52)s- - - s Py k(50)}

must have non-empty intersection since, if they are disjoint then from the {w;, w2 }-separating
property of H, there exists a column that separates the following two sets of rows of H:
{a¢b1,k(t1)’ Ogyy k(t2)r - 7a‘¢bu,k(tu)} and {a¢d1,k(51)’ gy p(s2)r "+ ’a¢dv,k(5v)}’

this column also separates the two sets of rows, X; and Xs, of ®(#), which contradicts to the
assumption that desc(X1) Ndesc(Xs) # 0.

For each k, 1 < k < wywy + 1, let Sk denote the set of all ordered pairs (p, q) with 1 < p < u and
1 < g <, such that ¢y, x(tp) = b4, k(5¢)- From the above argument, Sy is not empty for any k.

Since there are wiws+1 sets Sy and there are uv < wyws possible ordered pairs (p,q) with1 <p < u
and 1 < ¢ < v, it follows from Pigeon Hole Principle that there must exist a pair (p, g) that belongs
two at least two sets, say Sk, and Sk, with k1 # ko. We have,

{¢bp,k1(tp) = gk (5¢)
Bopka (tp) = Pdy ks (8¢)

10



Thus, t, = sq and b, = dy. Hence, (by,tp) = (dg,s4) € X1 N Xo, contradiction. m

Proof of Theorem 12. The matrix ®(#1, Hz2) contains ning rows divided into ny blocks, each block
contains ny rows. With 1 < b < ng, 1 <t < ny, let (b,t) denote the ¢ row in the b™® block of
®(H1,H2). If a;, a; denote the i*" rows of H; and Hs, respectively, then (b,t) consists of wiws
rows of H1 and one row of Hy as follows

(0,1) = (g, (1) () - - 3 Oy g (1) O)-
We prove that ®(H1, Ho) is {wy, ws }-separating by contradiction. Assume that X1 = {(b1,t1),..., (by,tu)}

and Xy = {(d1,s1),...,(dy,sy)} are two disjoint sets of rows of ®(H;,Hs) with 1 < u < wy,
1 < v < wy and desc(X1) Ndesc(Xa) # 0.

(b1, 81) = Oy a(t1)  Bgpa(tt) -+ Cdpywywy(tt) b
(b2, t2) = Gg 1(ts)  Ggpyn(ts) - Cpyuiwy(ts) s
X, 2 ) ) :
(bustu) = g 1(ta) Dgpyote) = Odpyniuwg(te) b
(di,81) = Gy 1(51) Qpayn(s1) -+ Oaywyuy(st) s
(da, s2) = Cpay1(s2)  Bdaya(s2) ~+ Cdaywiwy(s2) o
X, . . . :
(do;S0) = gy 1(50) Baya(s0) Oy wpuy(se)

The two sets of indices
{bl,bg, ey bu} and {dl,dg, ‘e ,dv}

must have non-empty intersection since, if they are disjoint then from the {wi, ws}-separating

property of Ho, there exists a column that separates the following two sets of rows of Ho:

{ap,, @y, ... 00, and {aq,,4,,---,04,},

this column also separates the two sets of rows, X; and X9, of ®(H;,Hs2), which contradicts to
the assumption that desc(X1) Ndesc(Xs2) # 0. Therefore, if Sy denotes the set of all ordered pairs
(p,q) with1 <p <wand 1< g <w, such that b, = dg, then Sy is not empty.

Similar argument as in the proof of Theorem 11 shows that for each k, 1 < k < wjws, the following
two sets of indices

{dby k(1) Doy (t2)s - - -5 Doy k(tu)} and {@a, k(51), Pdy k(52)s- - -5 Pdy k(50)}

have non-empty intersection. So if Sy denotes the set of all ordered pairs (p,q) with 1 < p < u,
1 < g < v such that ¢y, k(tp) = da, k(sg) then Sy is not empty for each k, 1 <k < wiws.

By the Pigeon Hole Principle, there must exist a pair (p,q) that belongs to at least two sets, say
Sk, and Sg, with k1 # ko. Consider two cases, k1 and kz are both non-zero, or one of ki, ko is
equal to zero.

Case 1. If k1 and ko are non-zero then

{¢bp,k1(tp) = Pdy k1 (8¢)

Bop ez (tp) = Py k2 (Sq)

11



Thus, t, = sq and b, = d,. Hence, (b,,t,) = (dg, s4) € X1 N X3, contradiction.
Case 2. If one of k1, ko is zero. Assume that ko = 0, then

Doy b (tp) = bdy ki ()
by = dg
Since @ is bijective, we have t, = sq. Hence, (bp,tp) = (dq, s4) € X1 N Xo, contradiction. m
Proof of Theorem 13. In this proof, we use the same notation as in the proof of Theorem 11.

We prove that ®(H) is w-perfect by contradiction. Assume that X = {(b1,%1),..., (by,ty)} is a set
of u distinct rows of ®(#H) with 1 < u < w such that no column of ®(#) is one-to-one on X.

brt) = pam) G000 99, o)

(bort) = gy a) Go,002) oo B0, (1)
X : : : :

butud = G, at0) o) o 99, (), 00)

For each k, 1 <k < (%) + 1, the following indices
Po1,k (11)5 Poo e (E2), - - -, Do, e ()

must not be all distinct since, if they are all distinct then from the w-perfect property of H, there
exists a column that is one-to-one on the following set of rows of #:

{a’¢b1,k(tl)’ Ay 1 (t2)r - ’a¢bu,k(tu)}’
this column is also one-to-one on the set X of rows of ®(#), which contradicts to the assumption

we made earlier.

For each k, 1 < k < (3) 41, let Sy denote the set of all unordered pairs {p,q} with 1 < p # ¢ < u,
such that ¢y, (tp) = ¢p, k(tg). From the above argument, Sy is not empty for any k.

Since there are (%) + 1 sets Sy, and there are (%) < (%) unordered pairs {p, ¢} with 1 <p # ¢q < u,
it follows from Pigeon Hole Principle that there must exist a pair {p,q} that belongs to at least
two sets, say Sk, and S, with k1 # ko. We have,

{¢bp,k1(tp) = Py k1 (tg)
Bop ks (tp) = Doy ka(tq)

Thus, t, = t; and b, = by. Hence, (b,,tp) = (by,14), this contradicts to the assumption that X
contains u distinct rows. ®

Proof of Theorem 14. In this proof, we use the same notation as in the proof of Theorem 12.

We prove that ®(#1,Hs2) is w-perfect by contradiction. Assume that X = {(b1,%1),..., (by,tu)}
is a set of u distinct rows of ®(H1,Hs) with 1 < u < w such that no column of ®(H;,Hs) is
one-to-one on X.

bi,t1) = ag, (1) oy at) - %, (5)t) W
(b2, 12) = Ay, ,1(t2)  Cpya(tz) -+ a¢b2’(1§,)(t2) b,
(bus ) = Oy 1(tu) Dy, ,2(tu) - a¢bu,(z§)(tu) by

12



The following indices
b1,b2,...,by

must not be all distinct since, if they are all distinct then from the w-perfect property of Ho, there
exists a column that is one-to-one on the following set of rows of Ho:
{ab17 Qpyye -y abu}7

this column is also one-to-one on the set X of rows of ®(#;,Hs2), which contradicts to the as-
sumption we made earlier. Therefore, if Sy denotes the set of all unordered pairs {p,q} with
1 <p # q < wu such that b, = by, then Sp is not empty.

Similar argument as in the proof of Theorem 13 shows that for each k, 1 < k < (g’), the following
indices

By k(1) Dby (t2), -+ - s Doy e (tu)

must not be all distinct. So if Si denotes the set of all unordered pairs {p,q} with 1 <p #¢g<u
such that ¢y, k(tp) = ¢p, k(tg) then Sy is not empty for each k, 1 < k < (%)-

By the Pigeon Hole Principle, there must exist a pair {p, g} that belongs to at least two sets, say
Sk, and Sg, with k1 # ko. Consider two cases, k1 and k2 are both non-zero, or one of ki, kg is
equal to zero.

Case 1. If k1 and ko are non-zero then

{¢bp,k1(tp) = Pog.k1 (tq)
By ks (tp) = Do ka(tq)

Thus, t, = t4 and b, = by. Hence, (b,,1,) = (by,14), contradiction.

Case 2. If one of k1, ko is zero. Assume that ko = 0, then

{¢bp,k1(tp) = P,k (tg)
by = b

Since @ is bijective, we have t, = t,. Hence, (by,tp) = (b, 14), contradiction. m
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