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INSA de Toulouse, LESIA
135, avenue de Rangueil, 31077 Toulouse cedex 4

France

{hedabou, pierre.pinel, lucien.beneteau}@insa-toulouse.fr

Abstract. Side Channel Attacks may exploit leakage information to break
cryptosystems on smard card devices. In this paper we present a new SCA-
resistant elliptic curve scalar multiplication algorithm, based on the Lim
and Lee technique. The proposed algorithm builds a sequence of bit-strings
representing the scalar k, characterized by the fact that all bit-strings are
different from zero; this property will ensure a uniform computation be-
haviour for the algorithm, and thus will make it secure against SPA (Simple
Power Analysis) attacks. The use of a recently introduced randomization
technique achieves the security of the proposed scheme against other SCA
attacks. Furthermore, the proposed countermeasures do not penalize the
computation time.

Keywords. Elliptic curve cryptosystems, side channel attacks, scalar mul-
tiplication, pre-computed table.

1 Introduction

1.1 ECC and side channel attacks

Cryptosystems based on elliptic curves become more and more popular. The security
of these cryptosystems is based on the intractability of the discrete logarithm problem
on elliptic curves, since no sub-exponential attack is known for a general elliptic curve
over a finite field. With a much shorter key length, they offer the same level of security
as other public key cryptosystems such as RSA. Thus they seem to be ideal for appli-
cations with small resources such a smard cards, mobil devices, etc.

But a new threat has to be tackled with for these systems, as a new class of attacks,
called Side Channel Attacks (SCA), has been devised in the last years to allow the
adversary to obtain all or part of the secret information embedded in a cryptographic
device by observing elements such as computing time or power consumption.
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This paper will focus on Simple Power Analysis attacks (SPA), which are based on
the analysis of a single execution of the algorithm. This type of attack is particularly
efficient on elliptic curve cryptosystems, because the doubling and adding operations
on points behave differently and can be easily distinguished by that means. The more
sophisticated Differential Power Analysis (DPA) interprets the collected results of sev-
eral executions of the algorithm with statistical tools. Immunity against DPA attacks
may be obtained by combining several data randomization contermeasures.

1.2 Contribution of this paper

In this paper we propose a new SCA-resistant scheme based on the Lim and Lee [LL94]
technique. The proposed scheme constructs a new sequence of bit-strings representing
the scalar k from its bit-string sequence as introduced by Lim and Lee. This new se-
quence is characterized by the fact that all its bit-strings are different from zero. The
proposed scheme is more efficient than Möller’s one [Möl01], its cost being about 5%
to 10% smaller than Möller’s one.

This paper is organized as follows: section 2 briefly reviews the mathematical back-
ground for elliptic curve cryptography. In section 3, we introduce the Side Channel
Attacks and the countermeasures against them. In section 4, we describe Lim and
Lee’s algorithm and its shortfalls, before introducing our method and studying its ef-
ficiency and resistance against side channel attacks. Finally, we conclude in section
5.

2 Mathematical background

2.1 Elliptic curves

An elliptic curve is the set of the solutions of a Weierstrass equation over a field. For
cryptographic purposes, this field is most frequently a finite field of the form GF (p)
or GF (2m). In these particular cases, the Weierstrass equation can be reduced to the
following simpler forms

y2 = x3 + ax + b over GF (p), with a, b ∈ GF (p) and 4a3 + 27b2 6= 0,

y2 + xy = x3 + ax2 + b over GF (2m), with a, b ∈ GF (2m) and b 6= 0.

If the formal point at infinity Θ is added to the set of solutions, an adding operation
can be defined over the elliptic curve, which turns the set of the points of the curve
into a group.

The adding operation between two points is defined as follows.

Let P1 = (x1, y1) and P2 = (x2, y2) be two points on the elliptic curve, neither being
the point at infinity.

Over GF (p) the inverse of a point P1 is −P1 = (x1,−y1). If P1 6= −P2 then P1 + P2 =
P3 = (x3, y3) with
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x3 = λ2 − x1 − x2,

y3 = λ(x1 − x3)− y1

and

λ =

{

y2−y1

x2−x1
if P1 6= P2 (adding)

3x1
2+a

2y1
if P1 = P2 (doubling)

Over GF (2m) the inverse of a point P1 is −P1 = (x1, x1 + y1). If P1 6= −P2 then
P1 + P2 = P3 = (x3, y3) with

x3 = λ2 + λ + x1 + x2 + a,

y3 = λ(x1 + x3) + x3 + y1,

and

λ =

{ y2+y1

x2+x1
if P1 6= P2, (adding)

x1 + y1

x1
if P1 = P2. (doubling)

2.2 Projective coordinate representations

All preceeding formulas for adding and doubling of elliptic curve point require a field
inversion. Unfortunately, this operation in known to be highly expensive. To avoid the
corresponding expenses, it may be advantageous to represent the points using projec-
tive coordinates.

In standard projective coordinates, the projective point (X, Y, Z), Z 6= 0, corresponds
to the affine point (X

Z
, Y

Z
). The projective equations of the curve are then

Y 2Z = X3 + aXZ2 + bZ3 over GF (p),

Y 2Z + XY Z = X3 + aX2Z + bZ3 over GF (2m).

In Jacobian projective coordinates, the projective point (X, Y, Z), Z 6= 0, corresponds
to the affine point ( X

Z2 , Y
Z3 ). The projective equations are:

Y 2 = X3 + aXZ4 + bZ6 over GF (p),

Y 2Z + XY Z = X3 + aX2Z2 + bZ6 over GF (2m).

The randomized Jacobian coordinates method transforms the point (x, y, 1) in projec-
tive coordinates into (r2x, r3y, r) using a random non-zero number. The properties of
the Jacobian coordinates imply that (x, y, 1) = (r2x, r3y, r).
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3 Side Channel Attacks

The basic algorithm for computing Q = kP on an elliptic curve is based on doubling
and adding operations.

Algorithm 1 : Simple doubling-and-adding algorithm

Input: P, k = (kl−1, ...., k0)2.
Output: Q = kP .
1. Q = P .
2. For i = l − 2 downto 0 do
2.1 If ki = 0 then Q← 2Q
2.2 else Q← 2Q + P .
3. Return Q.

The two cases which may occur in step 2 of this algorithm can be distinguished by a
simple analysis of power consumption (SPA attack): when the power trace shows only
doubling, we conclude that ki = 0, and that ki = 1 in the other case.

Improved point multiplication algorithms such as the m-ary or the sliding window
methods will obscure k to some degree, but plenty of information may still be revealed.

To prevent side channel attacks, we can incorporate in the implementation some coun-
termeasures intended to make the processing time of the algorithm independent from
the data. These standard countermeasures consist usually in

· Performing some dummy operations [Cor99].
· Using data randomization [LS01, JQ01, JT01, Cor99]
· Using specific algorithms [LD99, OS02, Möl01, Mon87]

In [Cor99], the author suggests to add dummy operations and to use data random-
ization to obtain a resistant algorithm against SCA attacks. The inconvenient of this
method is that it penalizes the running time.

Liadet and Smart [LS01] have proposed to reduce information leakage by using a special
point representation in some elliptic curves pertaining to a particular category, such
that a single formula can be used for adding and doubling operations. In [JQ01], Joye
and Quisquater suggest to use the Hessian form, but their parametrization is not fully
general. A common disadvantage of this type of methods is that they require to use
some specific elliptic curves. All curves suitable for [LS01] have a group order divisible
by 4, and curves suitable for [JQ01] have a group order divisible by 3. None of these
methods is applicable to the curves recommended by the NIST and the SECG as given
in [NIST00, SEC00].

The third approach to prevent SPA attacks is to develop special types of algorithms,
like Montgomery’s [Mon87] and Möller’s [Möl01] algorithms. In this paper, we will
present a new SCA-resistant algorithm, which works on general elliptic curves.
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4 The proposed SCA-resistant algorithm

4.1 The fixed-base comb method and its shortcomings

In the following we describe the fixed-base comb method [BHLM01] based on the Lim
and Lee [LL94] technique.
Let (kl−1, · · · , k1, k0) be the binary representation of an integer k, ie k =

∑i=l−1
i=0 ki2

i,
with ki ∈ {0, 1}, and let w be an integer such as w ≥ 2; we set d = d l

w
e.

P being an elliptic curve point, for all (bw−1, · · · , b1, b0) ∈ Z2
w, we define

[b0, b1, · · · , bw−1]P = b0 + b12
d + b22

2d + · · ·+ bw−12
(w−1)d.

The comb method considers that k is represented by a matrix of w rows and d columns,
and processes k columnwise.

Algorithm 2 : Fixed-base comb method

Input: a positive integer k = (kl−1, · · · , k1, k0), an elliptic curve point P and a window
width w such as w ≥ 2.
Output: kP .
1. d = d l

w
e.

2. Precomputation: compute [bw−1, · · · , b1, b0]P for all (bw−1, · · · , b1, b0) ∈ Z2
w.

3. By padding k on the left with 0’s if necessary, write k = Kw−1 ‖ · · · ‖ K1 ‖ K0,
where each Kj is a bit-string of length d. Let K

j
i denote the i-th bit of K j.

4. Q← [Kw−1
l−1 , · · · ,K1

l−1,K
0
l−1]P.

5. for i from d− 2 down to 0 do
5.1 Q← 2Q
5.2 Q← Q + [Kw−1

i , · · · ,K1
i ,K0

i ]P.

6. Return Q.

The execution of a SPA attack on the fixed-base comb method can allow to detect
some information on the bits of the secret scalar. Indeed, the comb method performs
an adding and doubling operation if the bit-string [Kw−1

i , · · · ,K1
i ,K0

i ] is different from
0, and only a doubling operation in the other case; thus the analysis of the power con-
sumption’s measures during the execution of the algorithm can reveal whether the bit-
string [Kw−1

i , · · · ,K1
i ,K0

i ] is zero (ie (Kw−1
i , · · · ,K1

i ,K0
i ) = (0, · · · , 0)) or not. Since

the probability to have zero bit-string ([Kw−1
i , · · · ,K1

i ,K0
i ] = 0) is less important than

the probability to have a single zero bit (ki = 0), the comb method offers a better
resistance than the binary method, but it is not totally secure against SPA attacks.

In the next section we will convert the comb method to an SPA-resistant scheme by
constructing a new sequence of non-zero bit-strings. The obtained scheme combined
with randomization countermeasures achieves the security against SCA attacks.

4.2 Proposed method

We propose to modify the bit-string representation of k so as to make the fixed-base
comb method secure against SPA. We want to generate a sequence of bit-strings rep-
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resenting k so that every bit-string is different from zero.

Each new bit-string, noted (Ki, si), will result from the composition of some bit-string
[Kw−1

j , · · · ,K1
j ,K0

j ], with j ≤ i, and of one more bit noted si = ±1, which will be equal

to 1 if K
i = [Kw−1

j , · · · ,K1
j ,K0

j ], and equal to −1 if K
i = −[Kw−1

j , · · · ,K1
j ,K0

j ].

As we will see later, we will only need to convert odd integers into sequences of bit-
strings. We shall hence assume in the next subsection that k is odd.

4.2.1 Computing of the new bit-string sequence for odd k’s

A first idea would be to do the conversion by initializing s0 = 1 and constructing the
new sequence of bit-strings (Ki, s1) from the bit-strings [Kw−1

i , · · · ,K1
i ,K0

i ] by setting

{

(Ki, si) = ([Kw−1
i−1 , · · · ,K1

i−1,K
0
i−1], si−1)

(Ki−1, si−1) = ([Kw−1
i−1 , · · · ,K1

i−1,K
0
i−1],−si−1)

if [Kw−1
i , · · · ,K1

i ,K0
i ] = 0 and

{

(Ki, si) = ([Kw−1
i , · · · ,K1

i ,K0
i ], si−1)

(Ki−1, si−1) = ([Kw−1
i−1 , · · · ,K1

i−1,K
0
i−1], si−1)

otherwise.

But in this version of the algorithm constructing the sequence of non-zero bit-strings
representing k, a bit-string of k would either be touched if it is a zero bit-string or
kept unchanged otherwise; hence a SPA attack against the algorithm is conceivable.
To deal with this threat, we present now a SPA-resistant algorithm for recording the
new sequence of bit-strings of the scalar k.

Algorithm 3 : Computing of the new bit-strings representing k

Inputs: an odd positive integer k = (k0, k1, , · · · , kl−1), and a window width w ≥ 2.
Output: the sequence of bit-strings ((Ko, s0), (K1, s1), · · · , (Kd−1, sd−1)).
1. d = d l

w
e.

2. For i = l to (wd− 1) do ki ← 0.
3. (K0, s0)← ([Kw−1

0 , · · · ,K1
0 ,K0

0 ], 1).
5. For i = 1 to i = d− 1 do
5.1 If [Kw−1

i , · · · ,K1
i ,K0

i ] 6= 0 then ci ← 1 else ci ← 0.
5.2 b[0]← [Kw−1

i−1 , · · · ,K1
i−1,K

0
i−1], b[1]← [Kw−1

i , · · · ,K1
i ,K0

i ].
5.3 s[0]← −1, s[1]← 1.
5.4 (Ki, si)← (b[ci], 1), (Ki−1, si−1)← (b[0], s[ci]).
6 Return (Ko, s0), (K1, s1), · · · , (Kd−1, sd−1).

We prove hereunder that our new sequence of bit-strings represents correctly k.

Theorem 1 Algorithm 3, when given an odd scalar k, outputs a sequence of bit-strings
(Ki, si) such as

∑d−1
i=0 2isiKi =

∑i=d−1
i=0 2j [Kw−1

i , · · · ,K1
i ,K0

i ] = k.
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Proof. We assume that the equality
Qi =

∑j=i
j=0 2jsjKj =

∑j=i
j=0 2j [Kw−1

j , · · · ,K1
j ,K0

j ] holds for each i ∈ {0, · · · , n−1}. We

have to check that the equality is also satisfied for n, i.e that Qn =
∑j=n

j=0 2jsjKj =
∑j=n

j=0 2j [Kw−1
j , · · · ,K1

j ,K0
j ].

First, if [Kw−1
n , · · · ,K1

n,K0
n] is different from zero, we have Kn = [Kw−1

n , · · · ,K1
n,K0

n]
and sn = 1. Given that Qn = Qn−1 + 2nsnKn and applying the induction hypothesis
to Qn−1, the equality is verified.

Now, if [Kw−1
n , · · · ,K1

n,K0
n] is equal to zero, we have Kn = [Kw−1

n−1 , · · · ,K1
n−1,K

0
n−1],

sn = 1 and Kn−1 = [Kw−1
n−1 , · · · ,K1

n−1,K
0
n−1], sn−1 = −1. Thus

Qn =
∑j=n

j=0 2jsjKj =
∑j=n−2

j=0 2jsjKj + 2n−1sn−1Kn−1 + 2nsnKn

=
∑j=n−2

j=0 2jsjKj − 2n−1[Kw−1
n−1 , · · · ,K1

n−1,K
0
n−1] + 2n[Kw−1

n−1 , · · · ,K1
n−1,K

0
n−1].

By applying the induction hypothesis to Qn−2, we have
Qn−2 =

∑j=n−2
j=0 2jsjKj =

∑j=n−2
j=0 2j [Kw−1

j , · · · ,K1
j ,K0

j ]; thus

Qn =
∑j=n

j=0 2jsjKj =
∑j=n−2

j=0 2j [Kw−1
j , · · · ,K1

j ,K0
j ] + 2n−1[Kw−1

n−1 , · · · ,K1
n−1,K

0
n−1]

=
∑j=n

j=0 2j [Kw−1
j , · · · ,K1

j ,K0
j ].

The equality is satisfied, which completes the proof.

4.2.2 Computation of kP

The following algorithm, based on the new bit-string representation of k, implements
a scalar multiplication secure against simple power analysis on a general elliptic curve.

As Algorithm 3 supposes that k is odd, we propose to replace the computation of kP

by the computation of ((k + 1)P − P ) if k is even. But this implies that one more
point adding operation is performed if k is even, which would give way to a SPA attack
detecting whether the secret scalar is even or not. To deal with this threat, we replace
also the computation of kP if k is odd, calculating ((k + 2)P − 2P ) instead of kP

in this case.

In case of an even scalar, one more adding operation is performed, an SPA attack can
then detect whether the secret scalar is even or not. To deal with this threat, we propose
to convert as well the odd scalar k to k ′ = k + 2. Thus the scalar multiplication kP is
recovered by performing the substraction of either k ′P − P if k is even, and k′P − 2P
otherwise.
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Algorithm 4 : Computation of kP using the new bit-string representation

of k

Input: a scalar k and an elliptic curve point P .
Output: Q = kP .
1. (Precomputation) Compute [bw−1, · · · , b1, b0]P for all (bw−1, · · · , b1, b0) ∈ Z2

w.
2. If k mod 2 = 0 then k′ ← k + 1 else k′ ← k + 2.
3. Compute the sequence of bit-strings (K′

0, s0), (K
′

1, s1), · · · , (K
′

d−1, sd−1) represent-
ing k′.
4. Q← K

′

d−1P. // (each K
′

jP will be fetched from the precomputed table)
5. For i from d− 2 down to 0 do

5.1 Q1 ← 2Q
5.2 Q← Q1 + siK

′

iP

6. P ′ ← 2P .
7. If k mod 2 = 0 then return Q− P else return Q− P ′.

4.3 Security against SPA attacks

As shown before, all bit-strings representing k are different from zero. Thus, the pro-
posed algorithm computes the scalar multiplication with a uniform behaviour, by per-
forming exactly an adding and doubling operation at each step. Consequently, the
execution of a SPA attack against the proposed algorithm can not reveal any informa-
tion on the bits of the secret scalar k.

4.4 Randomization countermeasures against other CSA attacks

The use of projective randomization techniques such as randomized projective coordi-
nates [Cor99] or random isomorphic curves [JT01] is known to prevent DPA attacks.

But Okeya and Sakurai’s second-order DPA attack [OS02], which they have proposed
against Möller’s window method [Möl01], might still be applied against our algorithm.
This attack exploits the correlation between the power consumption and the weight of
the loaded data. A precomputed table is used by our algorithm, which is accessed for
each digit i to get some point K

′

iP to be added to Q1. We have to take care of the
fact that an attacker, by monitoring the power consumption, could manage to detect
whether or not K

′

i is equal to K
′

j. To avoid this possiblity, we change the randomiza-
tion of each precomputed point after getting the point in the table. Thus, even if we
have got the same point for different digits, the new point randomization implies that
we load a different data.

Exploiting the fact that the points with 0-coordinates (x, 0) or or (0, y)) can not be
randomized by the usual randomisation techniques, Geiselmann and Steinwandt [GS04]
have proposed another efficient attack on Möller’s method, which is also efficient on
the fixed-base comb method. But recently Itoh and al [IIT04] have presented the Ran-
domized Linearly-transformed Coordinates, which allow to randomize all intermediate
values. This countermeasure prevents the Geiselmann-Steinwandt attack, and also the
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more powerful RPA and ZPA attacks [Gou03, AT03].

4.5 Efficiency

The main phase of the proposed algorithm computes an adding and doubling operation
at each step. The cost of this phase is (d − 1)(A + D), where A, and D denote the
adding and doubling point operation. Since we have to perform Q − P or Q − 2P to
recover the multiplication result kP , the total cost is d(A + D).

Now, we evaluate the cost of precomputation phase. In this phase, we generate the
sequence of points [bw−1, · · · , b1, b0]P , for all (bw−1, · · · , b1, b0) ∈ Z2

w, such as

[bw−1, · · · , b1, b0]P = bw−12
(w−1)dP + · · ·+ b22

2dP + b12
d + b0P.

To perform the precomputing phase, we first compute 2dP, 22dP, · · · , 2(w−1)dP , which
will cost (w − 1)d doubling operations. The second step consists in computing all
possible combinations

∑i=s
i=r b12

idP , with bi ∈ {0, 1}, and 0 ≤ r < s ≤ w − 1. The
number of these combinations is 2w − w. Thus, the cost of this second step is 2w − w

adding operations, and the total cost of the proposed method, including the efforts to
prevent SPA attacks, is

wdD + (2w − w + d)A.

To prevent second-order DPA attacks, we have to rerandomize each precomputed point;
this will cost 5dM , where M denotes a field multiplication.

The proposed method perfoms only one more point adding and doubling than the
fixed-base comb method, which is negligible.

5 Conclusion

In this paper, we have presented a new SCA-resistant method for computing ellip-
tic curve scalar multiplications based on the fixed-base comb method. The proposed
method first converts the comb method to an SPA-resistant scheme and then com-
bines it with Randomized Linearly-transformed Coordinates to achieve the security
against other SCA attacks. Furthermore, this is done without increasing significantly
the amount of computation time, as the proposed method performs only one more point
adding and doubling than the fixed-base comb method.
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