
Scalable Public-Key Tracing and Revoking

Yevgeniy Dodis1, Nelly Fazio1, Aggelos Kiayias2, and Moti Yung3

1 Computer Science Department
Courant Institute of Mathematical Sciences
New York University, New York, NY, USA

{dodis,fazio}@cs.nyu.edu
2 Computer Science & Engineering Department

University of Connecticut, Storrs, CT, USA
aggelos@cse.uconn.edu

3 Department of Computer Science
Columbia University, New York, NY, USA

moti@cs.columbia.edu

Abstract. Traitor Tracing Schemes constitute a very useful tool against piracy in the context of digital
content broadcast. In such multi-recipient encryption schemes, each decryption key is fingerprinted and
when a pirate decoder is discovered, the authorities can trace the identities of the users that contributed
in its construction (called traitors). Public-key traitor tracing schemes allow for a multitude of non-
trusted content providers using the same set of keys, which makes the scheme “server-side scalable.”
To make such schemes also “client-side scalable,” i.e. long lived and usable for a large population
of subscribers that changes dynamically over time, it is crucial to implement efficient Add-user and
Remove-user operations. Previous work on public-key traitor tracing did not address this dynamic
scenario thoroughly, and there is no efficient scalable public key traitor tracing scheme that allows an
increasing number of Add-user and Remove-user operations. To address these issues, we introduce the
model of Scalable Public-Key Traitor Tracing, and present the first construction of such a scheme.
Our model mandates for deterministic traitor tracing and an unlimited number of efficient Add-user

operations and Remove-user operations. A scalable system achieves an unlimited number of revocations
while retaining high level of efficiency by dividing the run-time of the system into periods. Each period
has a saturation level for the number of revocations. When a period becomes saturated, an efficient
New-period operation is issued by the system server that resets the saturation level. We present a
formal adversarial model for our system taking into account its periodic structure, and we prove our
construction secure, both against adversaries that attempt to cheat the revocation mechanism as well
as against adversaries that attempt to cheat the traitor tracing mechanism.

Keywords: Digital Content Distribution – Traitor Tracing – Scalability – Broadcast Encryption –
Multicast

1 Introduction

An important application of global networking is digital content distribution. For such an application (e.g .,
Pay-TV) to remain economically viable for the long run, it is important to design distribution schemes with
certain basic properties: (1) security—this assures a subscription-based model of exclusive content reception;
(2) scalability—which assures efficient operation supporting many content providers and a dynamically
changing population of subscribers; and (3) piracy protection—to prevent or deter illegal distribution.

To achieve security, a content distribution scheme requires the implementation of a multi-user encryption
mechanism that assures that only current subscribers can receive the content.

Regarding piracy protection, the state of the art method which applies to software-based platform-
independent architectures, is the notion of traitor tracing schemes which we concentrate on in this work. A
traitor tracing scheme is a multi-recipient encryption system that can be used for digital content distribution,
with the property that the decryption key of each user is marked (fingerprinted). The server of the system
is capable of using a traitor tracing algorithm: a procedure that given access to a pirate decoder is capable



of recovering identities of subscribers that participated in its construction (called traitors). A traitor tracing
scheme is, therefore, a deterrence to piracy due to the fear of exposure.

Scalable Systems. In the context of content distribution, scalability has two facets: server-side and client-
side.

Server-side scalability is assured by employing a public-key scheme, which allows any third party to use
the encryption mechanism and broadcast digital content to the set of subscribers. This is very appealing
as it allows a multitude of digital-content providers (e.g. many different channels) to take advantage of the
availability of secure broadcast to distribute their content without the need to maintain relationships with
clients. The clients are, in fact, managed by the system server that is only responsible for maintaining and
assigning the clients’ decryption keys as well as publishing the encryption key. Namely, the server acts as a
pure key (and account) management service.

Regarding client-side scalability, observe that digital content distribution systems typically involve a large
population of users (accounts), that is changing dynamically during the life-time of the system. New users
should be introduced, and others need to be removed from the active user population entitled to receive the
digital content. To allow for a scalable management of accounts, keys should be easy to generate and revoke.

To date, no schemes have been proposed that provide both client-side and server-side scalability in the
context of traitor tracing schemes. This motivates us to define and realize a Scalable Public-Key Traitor
Tracing Schemes which achieves this combination.

Previous Results. Traitor Tracing Schemes were introduced by Chor et al. [6], who employed a probabilis-
tic design: each user possesses a different subset of a set of keys and tracing is achieved using the properties
of the key assignment. The results of Chor et al. were later implemented with concrete combinatorial designs
by [20]. These schemes do not possess a Remove-user operation. Later these results were extended by [11, 17],
who also considered the combination of traitor tracing schemes with efficient revocation methods (cf. broad-
cast encryption, [10]). These schemes are not scalable, since (i) they do not support public-key technology in
an efficient fashion, (ii) they employ combinatorial designs for the key-assignment that require a tight guess
of an a-priori bound on the number of users,4 and (iii) the ciphertext size is an increasing function of the
total number of revoked users in the system’s life-time.

A “native” public-key traitor tracing scheme was introduced in [15, 3] (the latter introduced a public-
key scheme with deterministic traceability); both schemes did not consider revocation of keys. This was
considered in the work of [19], which described several schemes in the symmetric-key setting and a public-
key scheme. In particular, one of the scheme proposed in [19] (Revocation Method 2), provides security
guarantees comparable to those obtained by our scheme, but it applies to the symmetric-key setting, thus
making it impossible for several content providers to serve the same user population without trusting each
other, effectively forgoing server-side scalability (enjoyed by our scheme).

On the other hand, the public-key method proposed in [19] provides server-side scalability, but can only
withstand a bounded number of revocations: if the number of revocations executed in the life-time of the
system exceeds the bound, previously revoked users could gain unlawful access to the system. Furthermore,
the ciphertext size is linear in the revocation bound, something that prohibits (for efficiency purposes) to
set the bound to a large value.

Public-key traitor tracing schemes with comparable revocation capabilities as the scheme in [19] (bounded
number of revocations) were also designed in [21] and [8, 9]. In all these schemes the bound on the number
of revocations is proportional to the ciphertext size of the system. We remark that the scheme of [8] allows
for an unlimited number of revocations, however this results in a degradation of the scheme’s efficiency in
the course of its run-time operation (as ciphertext sizes also depend logarithmically on the size of the user
population). We note that client-side scalability was recognized as an important issue and was considered
in the context of long lived broadcast encryption in [12]; it can also be achieved in the context of multicast
refresh-key [22, 5, 19]. These schemes however, do not operate in a server-scalable environment. In conclusion,

4 Note that adding users beyond the bound would still be possible but it would be an expensive operation affecting
the existing subscribers of the system.

2



to the best of our knowledge, none of the existing schemes satisfies the requirements of a Scalable Public-Key
Traitor Tracing Scheme.

Our Results. We introduce the first carefully formalized model of a scalable public-key traitor tracing
scheme where an unlimited number of users can be added and removed efficiently from the system and we
present a concrete scheme meeting these requirements, based on the DDH assumption. Addition of users does
not affect the keys of the existing users of the system. Furthermore, the design does not require an a-priori
bound on the number of users. User removal is achieved by dividing the run-time of the system into periods;
in each period a bounded number of user removals can be executed; unlimited number of user-removals is
achieved in our design by the implementation of an efficient New-period operation.

Our scheme allows efficient deterministic traitor tracing that recovers all traitors (in the non-black-box
traceability setting), while supporting the black-box confirmation method [3], (for black-box traitor tracing
model).

In a scalable scheme, adversaries can run the Add-user protocol to introduce adversarially-controlled users
in the system, and they can observe the modifications to the public key of the scheme that occur during
the run-time operation of the scheme and potentially take advantage of them. We consider two types of
adversaries, the ones that attempt to defeat the revocation mechanism of the system and the ones that try
to elude the traceability capability. Since the adversarial goal is distinct in these two cases, we consider the
following classification of adversaries:

– Window Adversary: the adversary obtains some user-keys that are subsequently revoked; the adversary
remains active and observes the revocation of other users of the system (in fact we allow the adversary
to adaptively select which users should be revoked). We show that our construction is secure against
window adversaries as long as they are fully revoked in a “window” of the system’s operation that has
a certain length (which is specified as a system parameter).

– Traceability Adversary: the adversary obtains some user-keys and constructs a pirate decryption de-
vice, employing the secret user-key information (in fact we allow the adversary to adaptively select the
identities of the traitors). We show that our construction is secure against this type of adversaries in
the non-black-box traitor tracing model. Our traitor tracing algorithm is deterministic and recovers the
identities of all traitors. Furthermore, our scheme supports the black-box confirmation method, that
allows a form of traceability in the black-box traitor tracing model, [3].

In Table 1, we compare our construction to previously proposed public-key schemes. The advantage of
our scalable public-key traitor tracing scheme over previous results comes from the fact that any adversary
fully revoked in a window of the system’s operation will, in fact, “expire.” An expired adversary will be
incapable of intercepting the scrambled content (in the semantic security sense) even if it remains active
in the system (and can still observe and even cause other users to get revoked). It is the capability of
our scheme to expire adversaries that allows for the enhanced functionality of an unlimited number of
revocations. None of the previous public-key traitor tracing schemes with revocation capability [19, 21, 8, 9]
possessed this crucial property. Although the work of [19] described a private-key scheme providing a similar
kind of functionality, achieving this in the server-scalable, public-key setting, and properly formalizing the
adversarial model constitutes a technical challenge and the undertaking of this work.

2 Our Model: Scalable Public-Key Tracing and Revoking

The life-time of a scalable public-key traitor tracing scheme is divided into periods. A period is an adminis-
trative unit managed based on activity and potentially time passing.

A scalable scheme is comprised of the following basic procedures:

– Setup. An initialization procedure that is executed by the server, which generates a master secret key
MSK along with a public key PK; the server keeps MSK secret and publishes PK.

3



Ciphertext Size Maximum Traceable
Coalition Size

Add-User Remove-User Adversaries
Expire

CFN94 [6] (as PK) O(( v
2
)3 log n) v/2 (probabilistic-BB) Bounded N/A N/A

KD98 [15] v - UnboundedN/A N/A

BF99 [3] v v/2 (any Non-BB) +
BB Confirmation

Bounded N/A N/A

NP00 [19] (PK-
Scheme)

v v/2 (Non-BB + spe-
cialized adversaries)

UnboundedUp to v revoca-
tions

NO

TT01 [21] v BB Confirmation UnboundedUp to v revoca-
tions

NO

DF02 [8] O(v log n) Unbounded Bounded Unbounded NO

DF03 [9] v BB Confirmation UnboundedUp to v revoca-
tions

NO

This work v v/2 (any Non-BB) +
BB Confirmation

UnboundedUp to v per
period, un-
bounded overall

YES

Table 1. Comparison of the main construction of this paper to previous public-key traitor tracing schemes. The
parameters used in the table are n=# of users, v=# of revocations. Note that “BB” stands for Black-Box, BB-
Confirmation stands for the Black-Box Confirmation method of [3] that requires exponential-time, and “unbounded”
means that any polynomial number of users (in the security parameter) can be supported.

– Broadcast Encryption. A public encryption algorithm E that takes as input the public key PK, and a
plaintext M , and outputs a ciphertext C. The ciphertext C is distributed to a population of users through
an insecure broadcast channel.

– Decryption. A deterministic algorithm D that takes as input the ciphertext C, and a user’s secret key
and decrypts C.

– Add-user. It is a key-generation procedure that results in a personalized secret key SK that can be used
to invert the public key PK. It is executed by the server and secretly communicated to a new user of
the system.

– Remove-user. A procedure that given a public key PK and a user’s secret key SK, results in a public
key PK ′, so that for all messages M , E(PK ′,M) should be “incomprehensible” for the user holding
the revoked secret key SK, while non-removed users should be capable of decrypting it. The revocation
procedure has a saturation limit that is an upper bound to the number of users that can be removed
inside a period.

– Tracing. A procedure that given the contents of a pirate decoder outputs the identities of the traitor
users whose keys are employed in the pirate decoder.

– New-period. A procedure executed by the server to initiate a fresh period, by means of transmitting
(on the broadcast channel) a special message transmitted to the active subscribers of the system. Users
removed in previous periods should be incapable of decrypting data subsequently transmitted within the
new period. A New-period operation occurs when the saturation limit is reached (a reactive change), or
when a certain time-limit is reached (a pro-active change).

Scalability Objectives. The properties of the various functions of a scalable scheme should satisfy the
following requirements:

– Efficient addition of unlimited number of users throughout the scheme’s operation. Specifically, the Add-

user operation should be a protocol executed between a new user and the server, that should have (i)
communication independent of the size of the user population, and (ii) it should not involve the existing
users of the system in any way.

– Efficient traitor tracing of a pirate decoder. Specifically, the tracing procedure should be polynomial-time
in the number of users and the number of traitors.

4



– Efficient revocation of the decryption capabilities of a set of users inside a period, provided that the
number of users to be removed is below the saturation limit. Specifically, Remove-user should have time
complexity independent of the number of users, and should be executed solely by the server, affecting
only the public key of the system.

– Efficient introduction of a new period. The communication overhead for changing a period should be
independent of the number of users of the system and it should not require private communication
channels between the server and the active users (but contrary to Remove-user it will require from users
to modify their secret keys—as a result in our model users are stateless within a period and stateful
across periods).

Formal Modeling of Scalable Schemes. The functionality of a scalable public-key traitor tracing
scheme should be two fold: on one hand, it should be capable of identifying users that participate in the
construction of pirate decoders; on the other hand, the system should be capable of revoking the decryption
capabilities of “bad” users. We formally model the security of tracing and revocation in Section 5 and
Section 6, respectively.

3 Preliminaries

Throughout the paper, k will denote a security parameter; let q be a k-bit prime number and let G be a large
cyclic group of order q. We assume that G is the (multiplicative) subgroup of order q of Z

∗
p, where q | (p− 1)

and p is a large prime. Alternatively, one can take as group G the (additive) group of points of an elliptic
curve over a finite field.

Definition 1. Consider the two distributions over G4:

R
.
= {〈g, g′, u, u′〉 | g, g′, u, u′ ∈ G}

D
.
= {〈g, g′, u, u′〉 | g, g′, u, u′ ∈ G, logg u = logg′ u′}.

For all 0/1-valued probabilistic polynomial-time algorithm A and for all k ∈ Z≥0 , define the DDH advantage
of A against G at k as:

AdvDDHG,A(k)
.
=
∣

∣

∣Pr[τ = 1 | ρ←r R; τ ←r A(1k, ρ)]−

Pr[τ = 1 | ρ←r D; τ ←r A(1k, ρ)]
∣

∣

∣
.

where the probability is over the random coins of A and the random choice of ρ from R and D, respectively.

Definition 2. Let AdvDDHG(k)
.
= maxAAdvDDHG,A(k), where the max is over all probabilistic, polynomial-

time 0/1-valued algorithms A.

Assumption 1 (Decisional Diffie-Hellman Assumption)
The Decisional Diffie-Hellman (DDH) assumption for G asserts that the function AdvDDHG(k) is negligible
in k.

In the following, we will also need a (weaker) assumption about the hardness of computing discrete
logarithms in G.

Definition 3. For all probabilistic polynomial-time algorithm A and for all k ∈ Z≥0 , define the DLog

advantage of A against G at k as:

AdvDLogG,A(k)
.
= Pr[w′ = w | g, g′ ←r G;w ← logg g

′;

w′ ← A(1k, g, g′)].

where the probability is over the random coins of A and the random choice of g, g ′ from G.

5



Definition 4. Let AdvDLogG(k)
.
= maxAAdvDLogG,A(k), where the max is over all probabilistic, polynomial-

time algorithms A.

Assumption 2 (Discrete Logarithm Assumption)
The Discrete Logarithm (DLog) assumption for G asserts that the function AdvDLogG(k) is negligible in k.

3.1 Discrete-Log Representations

Let g be a generator of G and let h0, h1, . . . , hv be elements of G such that

hj = grj

with j = 0, . . . , v and r0, . . . , rv ∈ Zq. For a certain element y
.
= gb of G, a representation of y with respect

to the base h0, . . . , hv is a (v + 1)-vector
δ
.
= 〈δ0, . . . , δv〉

such that:
y = hδ0

0 · . . . · h
δv
v

or equivalently δ · r = b where “·” denotes the inner product of two vectors modulo q.
It is well known (e.g., see [4]) that obtaining representations of a given y w.r.t. some base h0, . . . , hv is

as hard as the discrete-log problem over G. Furthermore, it was shown in Lemma 3.2 of [3] that if some
adversary is given m < v random representations of some y with respect to some base, then any additional
representation that can be obtained has to be a “convex combination” of the given representations (a convex
combination of the vectors δ1, . . . , δm is a vector

∑m
`=1 µ`δ` with

∑m
`=1 µ` = 1). However, our scheme makes

use of a particular family of discrete-log representations, introduced below. In Section 6 we will see how
Lemma 3.2 of [3] can be modified accordingly.

3.2 Leap-Vectors

We introduce a new family of discrete-log representations, called leap-vectors. In what follows, we denote
with Z

v
q [x] the set of v-degree polynomials over Zq; and with Z

<v
q [x] the ring of polynomials over Zq with

degree less than v.

Definition 5. Given z1, . . . , zv ∈ Zq and P (x) ∈ Z
v
q [x], the set LP

z1,...,zv
of leap-vectors w.r.t. P (·) and the

values z1, . . . , zv, consists of all vectors α ∈ Z
v+1
q for which it holds that:

P (0) = α · 〈1, P (z1), . . . , P (zv)〉. (1)

In other words, a leap-vector w.r.t. P (·) and z1, . . . , zv, is a representation of gP (0) with respect to the
base

g, gP (z1), . . . , gP (zv).

Given any leap-vector α := 〈α0, . . . , αv〉 w.r.t. some values z1, . . . , zv, it is possible to derive the equation

α0 =

(

1−
v
∑

`=1

α`

)

a0 +
v
∑

j=1

(

v
∑

`=1

zj
`α`

)

aj

over the coefficients of the polynomial

P (x) := a0 + a1x+ . . .+ avx
v.

If one possesses a point 〈xi, P (xi)〉 of the polynomial P (·), it is possible to generate a leap-vector for the
values z1, . . . , zv (provided that xi 6∈ {z1, . . . , zv}) using Lagrange interpolation.

6



Definition 6. Given distinct xi, z1, . . . , zv ∈ Zq, and P (x) ∈ Z
v
q [x], define the leap-vector νxi,P

z1,...,zv
associated

to the point 〈xi, P (xi)〉 w.r.t. P (·) and z1, . . . , zv as:

νxi,P
z1,...,zv

.
= 〈λ

(i)
0 P (xi), λ

(i)
1 , . . . , λ(i)

v 〉 (2)

where

λ
(i)
0

.
=

v
∏

j=1

xi

xi − zj

(3)

and, for ` = 1, . . . , v

λ
(i)
`

.
=

z`

z` − xi

·
v
∏

j = 1
j 6= `

z`

z` − zj

. (4)

An important property of leap-vectors is the following:

Proposition 1. Given a polynomial P (·) ∈ Z
v
q [x] and the values z1, . . . , zv ∈ Zq, knowledge of a leap-vector

α ∈ LP
z1,...,zv

implies knowledge of a linear equation on the coefficients of P (·) linearly independent from the
linear equations defined using 〈z1, P (z1)〉, . . . , 〈zv, P (zv)〉.

Proof. Define
π
.
= (P (z1), P (z2), . . . , P (zv), α0)

T .

The constraint on the coefficients a0, a1, . . . , av of the polynomial P (·) arising from points 〈z1, P (z1)〉, . . . , 〈zv, P (zv)〉
and the equation associated to the leap-vector α, can be represented as:

π = M · a

where
a
.
= (a0, a1, . . . , av)T

and

M
.
=















1 z1 . . . zv
1

1 z2 . . . zv
2

...
...

...
...

1 zv . . . zv
v

1−
∑v

j=1 αj −
∑v

j=1 αjzj . . . −
∑v

j=1 αjz
v
j















Notice that matrix M above is obtained from a Vandermonde matrix by adding a linear combination of
the first v rows to the last one. Since every Vandermonde matrix has full rank, it follows that M has full
rank, too. Hence, the equation defined by the leap-vector α is linearly independent to the equations defined
by the points 〈z1, P (z1)〉, . . . , 〈zv, P (zv)〉. ut

As a result, the possession of a leap-vector implies some knowledge about the polynomial P (·) beyond
what is implied by the points 〈z1, P (z1)〉, . . . , 〈zv, P (zv)〉. In other words, a leap-vector is the necessary
information needed to leap from the values P (z1), . . . , P (zv) to the value P (0).

4 Our Scheme

Setup. The description of a cyclic multiplicative group G of order q is generated. Then, two random
generators g, g′ ∈ G and two random polynomials A(·), B(·) ∈ Z

v
q [x] are selected. The parameter v will be

also referred to as the saturation limit, whereas m = b v
2c will be the maximum traitor collusion size. Define

A(x) := a0 + a1x+ . . .+ avx
v

B(x) := b0 + b1x+ . . .+ bvx
v.

7



The master secret key is

MSK := (A(·), B(·))

and the system’s public key is

PK := 〈g, g′, gA(0)g′B(0), 〈`, gA(`)g′B(`)〉v`=1〉

where indices 1, . . . , v are used as place-holders. The server initiates a new period by publishing PK, and
sets the saturation level L to 0. L is a system variable known to the server.

Add-user. When a new user i requests to join the system, the server transmits (over a private channel)
the tuple 〈xi, A(xi), B(xi)〉 to user i, where

xi ←
r

Zq xi 6∈ {1, . . . , v} ∪ U .

The set U is the user-registry containing all values xi that were selected in previous executions of the Add-user

protocol. Subsequently, the server records the value xi as associated to user i and adds xi to U .

Encryption. The sender obtains the current public key of the system

PK := 〈g, g′, y, 〈z1, h1〉, . . . , 〈zv, hv〉〉

(where y = gA(0)g′B(0) and h` = gA(z`)g′B(z`), for some identity z`, ` = 1, . . ., v) and then employs the
encryption function E that, given the public key PK and a plaintext M ∈ G, selects a random r ←r Zq and
sets the corresponding ciphertext to be:

〈gr, g′r, yr ·M, 〈z1, h
r
1〉, . . . , 〈zv, h

r
v〉〉.

Decryption. The decryption algorithm D takes as input a tuple of the form 〈xi, A(xi), B(xi)〉 and a
ciphertext

C = 〈u, u′, u′′, 〈z1, u1〉, . . . , 〈zv, uv〉〉.

D first computes the leap-vectors

νA,i
.
= νxi,A

z1,...,zv
νB,i

.
= νxi,B

z1,...,zv

associated to the points 〈xi, A(xi)〉 and 〈xi, B(xi)〉 with respect to the values z1, . . . , zv. Observe that, by
Definition 6 (Equations (2) and (4)), νA,i and νB,i agree on all components except for the first: denoting
with (νA,i)` (respectively (νB,i)`) the entry in νA,i (respectively νB,i) indexed by `, it holds that νi,`

.
=

(νA,i)` = (νB,i)`, for ` = 1, . . . , v.

The decryption algorithm returns:

D(C)
.
=

u′′

u(νA,i)0u′(νB,i)0
∏v

`=1 u
νi,`

`

If C is a properly formed ciphertext, i.e.

C = 〈gr, g′r, yr ·M, 〈z1, h
r
1〉, . . . , 〈zv, h

r
v〉〉

then, due to the properties of the leap-vector representation (Equation (1)), we have:

D(C) =
grA(0)g′rB(0)M

gr(νA,i)0g′r(νB,i)0
∏v

`=1 g
rνi,`A(z`)g′rνi,`B(z`)

= M

8



Remove-user. Let i1, . . . , ik be the identities of the users to be removed, so that L+k ≤ v. Suppose that the
current public key is PK = 〈g, g′, y, 〈z1, h1〉, . . . , 〈zv, hv〉〉. The revocation procedure uses the user-registry U
to retrieve the values xi1 , . . . , xik

and modifies the current public key PK as:

PK :=〈g, g′, y, 〈z1, h1〉, . . . , 〈zL, hL〉,

〈xi1 , g
A(xi1

)g′B(xi1
)〉, . . . , 〈xik

, gA(xik
)g′B(xik

)〉,

〈zL+k+1, hL+k+1〉, . . . , 〈zv, hv〉〉.

Finally, the saturation level is increased to L := L+ k.
New-period. When a Remove-user operation is invoked such that the resulting saturation level L would

“overflow” the saturation limit v, the server starts a new period. First, the server broadcasts a special message
change period (signed, but not encrypted). Note that we assume that change-period is digitally signed by the
server so that no third parties can maliciously initiate the New-period operation.

Let enc : Zq → G be an easily invertible encoding that translates a number from {0, . . . , q − 1} into
an element of G. If G is the subgroup of Z

∗
p of oder q = p−1

2 , then enc can be implemented as follows:
enc(a)

.
= (a+1)2 mod p. It is easy to see that enc(a) ∈ G for any a ∈ Zq: this is because G is the subgroup of

quadratic residues modulo p. The encoding function enc can be easily inverted as follows: given b := enc(a),
compute the two square roots ρ1, ρ2 of a modulo p and define enc−1(b) = min{ρ1, ρ2} − 1 where min treats
ρ1, ρ2 as integers in {0, . . . , p− 1}.

The server selects d0, . . . , dv, e0, . . . , ev ←
r

Zq and transmits the reset message

Creset := 〈E(PK, enc(d0)), . . . , E(PK, enc(dv)),

E(PK, enc(e0)), . . . , E(PK, enc(ev))〉

where PK is the current public key of the system. Let D(·) be the polynomial defined by d0, . . . , dv and let
E(·) be the polynomial defined by e0, . . . , ev: namely,

D(x) = d0 + d1x+ . . .+ dvx
v

E(x) = e0 + e1x+ . . .+ evx
v.

At this point, the server resets the saturation level L := 0, updates the two secret polynomials to be:

Anew(·) := A(·) +D(·) (mod q)

Bnew(·) := B(·) + E(·) (mod q)

and modifies the public key PK as follows:

PKnew := 〈g, g′, gAnew(0)g′Bnew(0), 〈`, gAnew(`)g′Bnew(`)〉v`=1〉.

Upon receiving the signed change period message, user i enters a wait-mode. When the user receives the reset

message Creset, he/she decrypts all ciphertexts, decodes the coefficients d0, . . . , dv, e0, . . . , ev using enc−1 and
forms the polynomials D(·), E(·). Then, the user modifies his/her secret tuple 〈xi, A(xi), B(xi)〉 to be the
new tuple

〈xi, A(xi) +D(xi), B(xi) + E(xi)〉.

Remark. We notice that the efficiency of the New-period operation can be improved by using hybrid en-
cryption. In particular, instead of computing and sending 2v + 2 ciphertexts under the current public-key
(which incurs a cost of O(v2) in terms of communication), the server may pick a random session key k, use
it to encrypt the 2v + 2 coefficients via a secure one-time symmetric-key encryption scheme, and broadcast
the resulting ciphertext together with E(PK, enc′(k)) (where enc′ is a suitable encoding of session keys into
elements of G). Each non-revoked user will then be able to recover the coefficients d0, . . ., dv, e0, . . ., ev from
such reset message by first recovering the session key k from the public-key ciphertext E(PK, enc′(k)), and
then using k to decrypt the symmetric-key ciphertext. This will drop the communication cost to O(v). We
omit the details.

9



5 Dealing with Revocation

5.1 Model for Revocation

The public-key traitor tracing scheme described in Section 4 withstands a more powerful type of attack than
what has been considered so far in previous related work [19, 21, 8, 9]. In our attack scenario, the adversary A
is allowed not only to join the system up to a bounded number of times v (equal to the saturation level, which
is fixed as a system parameter), but also to observe and even actively affect the evolution of the system, by
specifying which users should be revoked and their relative order in the sequence of revocations. Notice that
this type of adversary defeats all previous public-key traitor tracing schemes with fixed ciphertext size [19,
21, 9].

More formally, in our model the adversary interleaves, in any adaptively-chosen order, two types of
queries:

– Join query: it models the subscription to the system of a malicious user controlled by the adversary. To
reply to such query, the server executes a variant of the Add-user operation, which allows the adversary
to specify the identity for which she will get the decryption key, (whereas in a regular Add-user operation,
the server would assign a random identity to the new user). Thus, the Join query models a more powerful
adversary that can control the random choice of the server. Notice that, after a Join query, the adversary
obtains a valid user-key capable of recovering subsequent encrypted broadcasts.

– Revoke query: it models the revocation of a user from the system. To reply to such query, the server
performs a Remove-user operation and gives A the new public key that results after the invalidation of
the key corresponding to the revoked user.

Notice that the main constraint we impose to the adversary’s behavior is that she can make at most v
Join queries; no restriction is given for Revoke queries. Whenever A has finished collecting the amount of
information she thinks she needs to maximize her chances of winning the game, the corrupted users are
revoked, the adversary outputs a pair of messages and receives back the encryption of either one with equal
probability.

To fully appreciate the novelty of the attack scenario proposed above, recall that in the adversarial model
that has been considered in previous work on public-key traitor tracing [19, 21, 8, 9], the only functionality
conceded to A was to obtain the secret key of a user which was also simultaneously revoked from the system.
In our model, such capability, usually called corruption, is split into two distinct operations. This clearly
allows the adversary to mount more powerful attacks, and does indeed more closely model the reality, since
the server does not always find out about “bad” users immediately. Moreover, keeping the Join and Revoke

operations distinct, allows us to impose on the adversary the (minimal) restriction of obtaining at most v
user-keys, without bounding the number of Revoke queries. This constitutes a major novelty of our adversarial
model: previous work required both the number of revoked users and the number of compromised user-keys
(tied together by the definition of corruption query) to be bounded by v.

Clearly, for the challenge to the adversary not to be trivial, all the user-keys that A obtains through
Join queries must have been rendered useless by corresponding subsequent Revoke queries. We model this
necessary constraint by requiring that before asking for her challenge, A should enter a wait-mode during
which all the (at most v) users she corrupted are revoked within a window of consecutive revocations that
should not get interrupted by a New-period operation.

It is interesting to point here some technical similarities of the window adversary model to a (lunch-time)
Chosen Ciphertext Attack (CCA1). In particular, in a lunch-time attack the adversary, prior to obtaining
the challenge, can query a decryption oracle to obtain decryptions of chosen ciphertexts; in the security
proof, this introduces the technical challenge of simulating such decryption oracle. In the case of a window-
adversary, the adversary can query the Join oracle to obtain valid decryption keys (that will be revoked
afterwards). From a technical viewpoint, simulating the Join oracle is a technical challenge of similar nature
to the task of simulating the decryption oracle of a CCA1 attacker. Indeed, in our security proof and system
design we take advantage of techniques that were developed for dealing with CCA1 attacks.

10



Formal Model for Window Adversary. We formalize the above attack scenario in terms of the window
adversary attack game Gv

win(1
k), played between a challenger and the adversary A. This game consists of

three stages, denoted respectively fst, snd and trd. To enable coordination between the three stages, at the
end of each stage A is allowed to output a piece of state information (via the variable aux), which will be
given as input to the next stage.

The first stage (fst) is a learning stage, in which the adversary is allowed to obtain the secret keys of at
most v users and to make the system evolve via Revoke queries. At the end of this stage, all the corrupted
users get revoked.

The second stage (snd) is a choosing stage, in which A picks two messages M0, M1 that she deems she
will be able to distinguish in the ciphertext form.

In the third stage (trd), A receives a challenge ciphertext ψ∗, which consists of the encryption of either
M0 or M1 with equal probability. The game ends with A outputting her best guess to whether M0 or M1

was encrypted.

1. Let 〈PK,MSK〉 := Setup(1k).
2. Let L := 0, Corr := ∅.
3. Let state := 〈L,PK,MSK,Corr〉
4. aux← AJoin(state,·),Revoke(state,·)(fst, state.PK).
5. If L+ |Corr| > v then exit.
6. For all xj ∈ Corr do aux := aux||Revoke(state, xj).
7. 〈aux,M0,M1〉 ← A

Revoke(state,·)(snd, aux, state.PK).
8. ψ∗ ← E(state.PK,Mσ∗), where σ∗ ←r {0, 1}.
9. σ ← ARevoke(state,·)(trd, aux, state.PK,ψ∗).

10. Output Success if and only if σ = σ∗.

The two oracles employed above are defined as follows:

Join(state, x) :
(i) parse state as 〈L,PK,MSK,Corr〉;
(ii) parse PK as 〈g, g′, y, 〈z1, h1〉, . . . , 〈zv, hv〉〉;
(iii) parse MSK as (A(·), B(·));
(iv) if x ∈ {1, . . . , v}, then exit;
(v) set Corr := Corr ∪ {x} and return (A(x), B(x)).

Revoke(state, x) :
(i) parse state as 〈L,PK,MSK,Corr〉;
(ii) parse PK as 〈g, g′, y, 〈z1, h1〉, . . . , 〈zv, hv〉〉;
(iii) parse MSK as (A(·), B(·));
(iv) if x ∈ Corr, then exit;
(v) if L = v then a New-period operation is executed and state is updated accordingly (i.e., L is reset to 0,
state.MSK is modified by adding the randomizing polynomials and state.PK changes correspondingly);
(vi) set L := L+ 1;
(vii) update state.PK by replacing the pair 〈zL, hL〉 with 〈x, gA(x)g′B(x)〉;
(viii) output state.PK; if step (v) caused a New-period operation, then also output the corresponding
reset message Creset.

Note that w.l.o.g. we assume that the adversary never corrupts the same user twice, as there is no extra
information to be gained, and never revokes the users it corrupts, as they get explicitly revoked at step 6. of
the attack game.

Definition 7. Define A’s advantage as

AdvA(k)
.
=| Pr(σ = σ∗)− 1/2 | .

A public-key traitor tracing scheme is secure against window adversaries if for any PPT adversary A, AdvA(k)
is negligible in k .

11



5.2 Security of Revocation

We now formally prove that the scalable public-key traitor tracing scheme described in Section 4 is secure
against window adversaries (as defined above). In the security proof, we will follow the same structural
approach used in [9], first advocated in [7]. Starting from the actual attack scenario, we will consider a
sequence of hypothetical games, all defined over the same probability space. In each game, the adversary’s
view is obtained in different ways, but its distribution is still indistinguishable among the games.

The security of our scheme relies on the DDH assumption (Assumption 1) as shown below in Theorem 1.

Theorem 1. Under the decisional Diffie-Hellman Assumption for G, the scheme presented above is secure
against window adversaries.

Proof. We define a sequence of “indistinguishable” games G0,G1, . . ., all operating over the same underlying
probability space. Starting from the actual adversarial game G0 = Gv

win(1
k), we incrementally make slight

modifications to the behavior of the oracles, thus changing the way the adversary’s view is computed, while
maintaining the views’ distributions indistinguishable among the games. In the last game, it will be clear
that the adversary has (at most) a negligible advantage; by the indistinguishability of any two consecutive
games, it will follow that also in the original game the adversary’s advantage is negligible. Recall that in
each game Gj , the goal of adversary A is to output σ ∈ {0, 1} which is her best guess to the bit σ∗ used at
step 7. of the attack game Gv

win(1
k) to create the challenge ciphertext ψ∗: let Tj be the event that σ = σ∗ in

game Gj (i.e., the event that the game ends with Success as output). W.l.o.g., in the following we assume
that the adversary corrupts exactly v users during the attack game.

Game G0. Define G0 to be the original game Gv
win(1

k).

Game G1. Define the “special” New-period operation to be the first one to be caused by the Revoke oracle
at step 7. of the attack game. Depending on the adversary’s strategy, such “special” New-period operation
may not occur at all.

Game G1 is identical to game G0, except that, in G1, the reset message output by the “special” New-

period operation contains 2v + 2 encryptions of random elements of Zq, rather than encryptions of the
coefficients of the randomizing polynomials. This modification suggests that the secret polynomials which
are contained in state.MSK at the beginning of the period initiated by the “special” New-period operation
are totally random, even given all the information in the adversary’s view.

In Lemma 2 (whose proof is given below), we show that the chances of adversary A winning game G1

cannot be significantly better than her chances of winning game G0: more precisely,

∣

∣Pr[T1]− Pr[T0]
∣

∣ ≤ (4v + 4) AdvDDHG(k). (5)

Game G2. To turn game G1 into game G2, step 8. of the attack game is modified as follows:

8′. ψ∗ ← E(state.PK,M),where M ←r G, σ∗ ←r {0, 1}

Because of this change, the challenge ciphertext ψ∗ no longer contains σ∗, nor does any other information
in the adversary’s view; therefore,

Pr[T2] =
1

2
. (6)

In Lemma 3, proven below, we show that the adversary has almost the same chances to guess σ∗ in game
G1 and G2: more precisely,

∣

∣Pr[T2]− Pr[T1]
∣

∣ ≤ 2 AdvDDHG(k). (7)

Combining Equations (5), (6), and (7) together, adversary A’s advantage can be bounded as:

AdvA(k) ≤ (4v + 6) AdvDDHG(k).

ut

12



The core of the proof of Theorem 1 is in the two lemmas that follow, Lemma 2 and Lemma 3.

Overview of the Proof Technique. Throughout the paper, we make extensive use of a technical lemma,
stated and proved as Lemma 9 in [7]. For ease of reference, we report it verbatim below.

Lemma 1. Let k,n be integers with 1 ≤ k ≤ n, and let K be a finite field. Consider a probability space
with random variables α ∈ Kn×1,β = (β1, . . . , βk)T ∈ Kk×1,γ ∈ Kk×1, and M ∈ Kk×n, such that α is
uniformly distributed over Kn,β = Mα+γ, and for 1 ≤ i ≤ k, the first ith rows of M and γ are determined
by β1, . . . , βi−1. Then, conditioning on any fixed values of β1, . . . , βk−1 such that the resulting matrix M has
rank k, the value of βk is uniformly distributed over K in the resulting conditional probability space.

Our use of this technical lemma is quite uniform across the proofs to follow. In all cases, our main aim
will be to prove that some quantity rand ∈ Zq looks uniformly random to the adversary, despite all the other
information in the adversary’s view. At a high level, our approach is organized in the following steps.

First, we consider all the randomness underlying a specific execution of the attack game. This will include,
for instance, the random coins of the adversary, the randomness used in creating the challenge, etc. We then
partition all the randomness in two parts: a quantity V and a vector α, such that conditioning on any fixed
value of V , α is still distributed uniformly at random in the appropriate vector space (which usually will
have Zq as support).

Second, we consider another vector β, whose last entry is rand, with the property that fixing a value
for V and β also fixes the value of α, and thus all the information of the entire game (which in particular
includes the information in the adversary’s view).

Third, we define a matrix M (and possibly a vector γ) describing the constraints binding vector α to
vector β, thus obtaining a matrix equation of the form:

β = M ·α + γ.

Finally, we make sure that the preconditions of Lemma 1 are fulfilled; it will follow that the last entry
of β (which is the quantity of interest rand), is distributed uniformly at random in Zq, even conditioning on
fixed values of V and of all the other entries of β, or equivalently, conditioning on all the other information
in the adversary’s view.

Notation. In what follows, we refer to the period initiated by the tth New-period operation as the tth period.
Also, for notational convenience, we denote with Dt(·) and Et(·) the randomizing polynomials chosen during
the tth New-period operation and with dt

0, . . . , d
t
v and et

0, . . . , e
t
v the corresponding coefficients. In some

cases, it will be convenient to denote these 2v + 2 coefficients with a uniform notation; for this reason, for
j = 1, . . . , 2v + 2, we additionally define ctj as follows:

ctj
.
=

{

dt
j−1 if j ∈ {1, . . . , v + 1}

ej−v−2 if j ∈ {v + 2, . . . , 2v + 2}

Moreover, let At(·) and Bt(·) be the values of the secret polynomials after the changes due to the tth New-

period operation. In other words, the system starts with period number 0, A0(·) and B0(·) are the polynomials
initially output by the Setup algorithm and

At(·)
.
= At−1(·) +Dt(·) Bt(·)

.
= Bt−1(·) + Et(·). (8)

Also define

Dt1,t2(·)
.
=

t2
∑

t=t1

Dt(·) Et1,t2(·)
.
=

t2
∑

t=t1

Et(·). (9)

Lemma 2.
∣

∣Pr[T1]− Pr[T0]
∣

∣ ≤ (4v + 4) AdvDDHG(k).

13



Proof. Recall that G1 differs from G0 only in the way the reset message is computed for the “special” New-

period operation: hence, if the adversary’s strategy does not cause any New-period operation to occur during
step 7. of the attack game, the two games are identical, so that in fact Pr[T1] = Pr[T0], and the Lemma
immediately follows.

We now discuss the case in which the “special” New-period operation takes place: in particular, let t̂
be the period initiated by this operation and D t̂(·) and E t̂(·) be the randomizing polynomials used in such
New-period operation. We then consider the sequence of 2v+3 hybrid games G0,0, . . . ,G0,2v+2, where G0,i is
defined as G0, except that the first i ciphertexts in the “special” reset message contain random values rather
than coefficients of the randomizing polynomials D t̂(·) and E t̂(·). In other words, G0,0 ≡ G0, G0,2v+2 ≡ G1

and two consecutive hybrid games G0,i and G0,i+1 differ only in that the (i+1)th ciphertext of the “special”
reset message contains the (i + 1)th coefficient in game G0,i, whereas it contains a random value in game
G0,i+1. Then, to prove the Lemma it suffices to show that for all i = 0, . . . , 2v + 1 it holds:

∣

∣Pr[T0,i+1]− Pr[T0,i]
∣

∣ ≤ 2 AdvDDHG(k). (10)

To this aim, fix i and consider the additional games G0
0,i ≡ G0,i, G1

0,i, G2
0,i, G3

0,i, G4
0,i ≡ G0,i+1, defined

as follows:

Game G1
0,i. It operates as G0

0,i, except that the (i + 1)th ciphertext in the “special” reset message is
computed as:

〈u, u′, u′′, 〈z`, u
At̂−1(z`)u′B

t̂−1(z`)〉v`=1〉

where u
.
= gr, u′

.
= g′r, u′′

.
= uAt̂−1(0) u′B

t̂−1(0)enc(ct̂i+1), r ←
r

Zq and ct̂i+1 is either the (i+ 1)th coefficient

of the randomizing polynomial Dt̂(·) (if 0 ≤ i ≤ v) or the (i− v)th coefficient of E t̂(·) (if v+1 ≤ i ≤ 2v+1).
Since such modification is just a syntactic change, it holds:

Pr[T 1
0,i] = Pr[T 0

0,i]. (11)

Game G2
0,i. To turn game G1

0,i into game G2
0,i we make another change to the way in which the (i+ 1)th

ciphertext in the “special” reset message is computed. Namely, the value u′ is now computed as u′
.
= g′r

′

, for
a random r′ ∈ Zq such that r′ 6= r. In other words, in game G2

0,i the values u and u′ are nearly independent

(being subject only to r 6= r′), whereas in game G1
0,i they are obtained using the same value r. Therefore,

using a standard reduction argument, any difference in behavior between games G1
0,i and G2

0,i can be used
to distinguish Diffie-Hellman tuples from totally random tuples. Hence,

∣

∣Pr[T 2
0,i]− Pr[T 1

0,i]
∣

∣ ≤ AdvDDHG(k). (12)

Note that for simplicity here (and throughout the rest of the paper) we omit the negligible additive term
that is caused by the negligibly-rare event r = r′.

Game G3
0,i. To define game G3

0,i, we again modify the (i + 1)th ciphertext in the “special” reset message:

specifically, the value u′′ is now computed as gr′′

, for a random r′′ ∈ Zq.
We want to show that this modification does not alter the behavior of adversary A or, more precisely,

that Pr[T 3
0,i] = Pr[T 2

0,i]. To this aim, we first consider all the random variables affecting the adversary’s view,
and then we show that they are distributed according to the same joint distribution in both games.

Let t̄ be the total number of New-period operations that occur during the entire game, and for t = 1, . . . , t̄,
let ct1, . . ., c

t
2v+2 be the coefficients of the randomizing polynomials Dt(·) and Et(·) used in the tth New-

period operation. For t = 1, . . . , t̄, t 6= t̂, and j = 1, . . . , 2v+ 2, let rt
j be the randomness used to encrypt (the

encoding of) coefficient ctj in the tth reset message.

As for the “special” reset message (i.e., the one corresponding to t = t̂), recall that in both game G2
0,i

and game G3
0,i, the first i ciphertexts consists of just random values s1, . . ., si ∈ G, rather than (the

encoding of) the corresponding coefficients ct̂1, . . ., c
t̂
i. Coefficients ct̂i+2, . . ., c

t̂
2v+2, instead, are regularly

14



encrypted under the public key PK t̂−1 in both games: let rt̂
j be the randomness used in such encryptions, for

j = i+2, . . . , 2v+2. The ciphertext corresponding to coefficient ci+1 in the “special” reset message constitutes
the only difference between the adversary’s view in game G2

0,i and G3
0,i. In particular, such encryption is

defined in terms of the values r, r′ and r′′: r and r′ are randomly chosen from Zq in both games, whereas
r′′ is computed differently in the two games. For the sake of clarity, we will denote with [r′′]2 and [r′′]3 the
value of such quantity in game G2

0,i and G3
0,i, respectively. Notice that [r′′]2 is a linear combination of r, r′

(and other quantities), whereas [r′′]3 is uniformly distributed in Zq, independently of anything else.

Define

W
.
=
(

{ctj , r
t
j}

2v+2
j = 1
t 6= t̂

, {ct̂j , sj , r
t̂
j}

i
j=1, {c

t̂
j , r

t̂
j}

2v+2
j=i+1, r, r

′
)

and consider the quantity

V
.
= (Coins, w, σ∗, r∗,W )

where Coins represents the coin tosses of A, w
.
= logg g

′, σ∗ is the random bit chosen by the challenger in
step 8. of the attack game and r∗ is the randomness used to create the challenge ψ∗.

The remaining randomness used during the attack game consists of the 2v+ 2 coefficients of the polyno-

mials A0(·), B0(·) and can be represented by a vector α uniformly distributed in Z
(2v+2)×1
q :

α
.
= (a0, a1, . . . , av, b0, b1, . . . , bv)T .

Consider the vector β ∈ Z
(2v+2)×1
q defined as:

β
.
= (X0,X1, . . . ,Xv,A1, . . . ,Av, r

′′)T

where X0
.
= A0(0) + wB0(0), X`

.
= A0(`) + wB0(`) and A`

.
= A0(x`) for ` = 1, . . . , v, and r′′

.
= logg u

′′.

It is clear by inspection that all the information in the adversary’s view is completely determined by
V and β. In particular, the initial public key PK0 is fixed by β and w; the secret keys of the corrupted
users are determined by the choice of β, Coins and w; the “special” reset message is fixed by PK0, Coins,
r′′ and all the randomness in W ; and the resulting public key PK t̂ only depends on PK0 and W . Thus, if
the distribution of V and β is the same in both games G2

0,i and G3
0,i, it will follow that Pr[T 3

0,i] = Pr[T 2
0,i].

Since the definition of r′′ is the only difference between game G2
0,i and G3

0,i, and in G3
0,i the value of [r′′]3 is

chosen uniformly from Zq, independently of anything else, it suffices to show that the distribution of [r′′]2,
conditioned on V and the first 2v + 1 entries of β, is also uniform in Zq.

In game G2
0,i, the quantities in V , β and α are related according to the following matrix equation:

[β]2 = M ·α + γ

where [β]2 denotes the value of β in game G2
0,i (i.e. when the value of the last entry is [r′′]2), γ ∈ Z

(2v+2)×1
q

is the vector

γ
.
=





























0
0
...
0
0
...
0

rD0,t̂−1(0) + wr′E0,t̂−1(0) + logg enc(c
t̂
i+1)





























15



and M ∈ Z
(2v+2)×(2v+2)
q is the matrix

M
.
=





























1 0 . . . 0 w 0 . . . 0
1 1 . . . 1 w w . . . w

...
...

1 v . . . vv w wv . . . wvv

1 x1 . . . xv
1 0 0 . . . 0

...
...

1 xv . . . xv
v 0 0 . . . 0

r 0 . . . 0 wr′ 0 . . . 0





























The above matrix describes all the constraints on α arising from the information in the adversary’s view in
game G2

0,i (which, as noted above, can be described just by V and [β]2). In other words, all other constraints
on α are linear combination of the above, possibly using coefficients from V . In particular, the constraints
that the adversary can derive from knowledge of the values B0(x`), ` = 1, . . . , v (which come from the
secret keys that A got via Join queries) can be obtained from the constraints corresponding to X0, X1, . . .,
Xv, A1, . . ., Av and the value of w. As for Revoke queries, notice that the public key PK resulting from
invalidating the secret key of an arbitrary user z during time period t, does not provide any new information
about α to the adversary. Indeed, PK only differs from the previous public key in that it contains the value
hz = gAt(z)g′B

t(z) which is determined by the quantity:

X
.
= At(z) + wBt(z)− (D0,t(z) + wE0,t(z))

= A0(z) + wB0(z).

Since such value is just a point of the polynomial v-degree A0(·) +wB0(·), which is completely fixed by the
values X0, X1, . . ., Xv, it immediately follows that the constraint on α induced by X is a linear combination
of the first v + 1 rows of M. Similarly, the v values u1, . . ., uv included in the (v + 1)th ciphertext of the
“special” reset message are determined by the quantities Xz1

, . . ., Xzv
, where, for ` = 1, . . . , v, Xz`

is defined
as:

rAt̂−1(z`) + wr′B t̂−1(z`)− (rD0,t̂−1(z`) + wr′E0,t̂−1(z`))

or equivalently
Xz`

.
= rA0(z`) + wr′B0(z`).

Such values are just points of the v-degree polynomial

rA0(·) + wr′B0(·)

which is determined by A1, . . ., Av, B0(x1), . . ., B
0(xv), r, r′, w and [r′′]2. Thus, it follows that all the

constraints on α induced Xz1
, . . ., Xzv

by are linear combinations of the rows of M.
Moreover, M has rank (2v+ 2), provided that r 6= r′ and w 6= 0, since the corrupted users x1, . . ., xv are

assumed to be distinct.
As soon as we fix a value for V , vector γ and the first v + 1 rows of matrix M are completely fixed, but

α is still distributed uniformly and independently at random in Z
(2v+2)×1
q . If we additionally fix the value of

the first (v + 1) components of [β]2, the initial public key PK0 is fixed; it follows that the first identity x1

that A chooses to corrupt is also fixed and thus the (v+2)th row of M is determined. Fixing also a value for
A1 (which is the (v + 2)th entry of [β]2), the value of B1 is fixed too, so that all the information on which
the adversary can base her choice of x2 is fixed, and thus the (v + 3)th row of M is determined as well. By
a similar reasoning, it follows that fixing the first (v + i+ 1) entries of [β]2 determines the (v+ i+ 2)th row
of M, for i = 1, . . . , v. Hence, by Lemma 1, we can conclude that the conditional distribution of [r′′]2, w.r.t.
V and to all other components of [β]2, is also uniform over Zq, from which it follows that

Pr[T 3
0,i] = Pr[T 2

0,i]. (13)

16



Game G4
0,i. Game G4

0,i is defined to be identical to G0,i+1. Thus, G4
0,i differs from G3

0,i only in that the
values u and u′ in the (i + 1)th ciphertext in the “special” reset message are consistent, rather than being
nearly independent, as in game G3

0,i. Namely, the values u and u′ are now computed as u
.
= gr and u′

.
= g′r,

for the same random r ∈ Zq. It follows that any difference in behavior between games G3
0,i and G4

0,i can be
used to distinguish Diffie-Hellman tuples from totally random tuples. Hence,

∣

∣Pr[T 4
0,i]− Pr[T 3

0,i]
∣

∣ ≤ AdvDDHG(k). (14)

Combining Equations (11), (12), (13) and (14) we get Equation (10), for all i = 0, . . . , 2v + 1; then, by
definition of the hybrid sequence G0,0, . . . ,G0,2v+2, the thesis follows. ut

Lemma 3.
∣

∣Pr[T2]− Pr[T1]
∣

∣ ≤ 2 AdvDDHG(k).

Proof. Recall that G2 differs from G1 only in the way the challenge ciphertext ψ∗ is computed: in particular,
in game G1, ψ

∗ encrypts either one of the two messages M0 and M1 chosen by the adversary, whereas in
G2, ψ

∗ encrypts a totally random message M ←r G.
To reach the thesis, we consider the sequence of games G0

1 ≡ G1, G1
1, G2

1, G3
1, G4

1 ≡ G2, defined below.

Game G1
1. It operates as G0

1, except that the challenge ciphertext is computed as follows:

〈u∗, u′∗, u′′∗, 〈z∗` , u
∗At∗ (z∗

` )u′∗
Bt∗ (z∗

` )
〉v`=1〉

where u∗
.
= gr∗

, u′∗
.
= g′

r∗

, u′′∗
.
= u∗At∗ (0)u′∗

Bt∗ (0) ·Mσ∗ and r∗ ←r Zq. This syntactic change does not affect
the adversary’s view, and thus

Pr[T 1
1 ] = Pr[T 0

1 ]. (15)

Game G2
1. To turn game G1

1 into game G2
1 we make another change to the way in which the challenge

ciphertext is computed. Namely, the value u′∗ is now computed as u′∗
.
= g′r

′∗

, for a random r′∗ ∈ Zq such
that r′∗ 6= r∗. In other words, in game G2

1 the values u∗ and u′∗ are nearly independent (being subject only
to r∗ 6= r′∗), whereas in game G1

1 they are obtained using the same value r∗. Therefore, using a standard
reduction argument, any difference in behavior between games G1

1 and G2
1 can be used to distinguish Diffie-

Hellman tuples from totally random tuples. Hence,

∣

∣Pr[T 2
1 ]− Pr[T 1

1 ]
∣

∣ ≤ AdvDDHG(k). (16)

Game G3
1. To define game G3

1, we again modify the challenge ciphertext: specifically, the value u′′∗ is now
computed as gr′′∗

, for a random r′′∗ ∈ Zq.
To prove that Pr[T 3

1 ] = Pr[T 2
1 ], we first consider all the quantities that can affect event T 2

1 in game G2
1

and event T 3
1 in game G3

1, and then we show that these quantities have the same joint distribution in both
games.

Let Dt∗(·) and Et∗(·) be the randomizing polynomials used in the last New-period operation before the
challenge ciphertext was created. (If no New-period occurred at all during the attack game, then let both
Dt∗(·) and Et∗(·) be just the zero polynomial.)

Let t̄ be the total number of New-period operations that occur during the entire game, and for t = 1, . . . , t̄,
let ct1, . . ., c

t
2v+2 be the coefficients of the randomizing polynomials Dt(·) and Et(·) used in the tth New-period

operation. For t = 1, . . . , t̄, and j = 1, . . . , 2v + 2, let rt
j be the randomness used to encrypt (the encoding

of) coefficient ctj in the tth reset message.
Observe that the challenge ciphertext ψ∗ is the only value in the adversary’s view which is computed

differently in game G2
1 and game G3

1. In particular, such encryption is defined in terms of the values r∗, r′∗

and r′′∗: r∗ and r′∗ are randomly chosen from Zq in both games, whereas r′′∗ is computed differently in the
two games. For the sake of clarity, we will denote with [r′′∗]2 and [r′′∗]3 the value of such quantity in game
G2

1 and G3
1, respectively. Notice that [r′′∗]2 is a linear combination of r∗, r′∗ (and other quantities), whereas

[r′′∗]3 is uniformly distributed in Zq, independently of anything else.

17



The rest of our analysis proceeds differently depending on whether the adversary’s strategy caused the
“special” New-period operation to occur or not. The case in which no New-period operation occurred at step
7. of the attack game is slightly simpler, so we discuss it first.

Case 1. Consider the quantity

V
.
= (Coins, w, {{ctj , r

t
j}

2v+2
j=1 }

t̄
t=1, σ

∗, r∗, r′∗)

where Coins represents the coin tosses of A, w
.
= logg g

′, and σ∗ is the random bit chosen by the challenger
in step 8. of the attack game.

The remaining randomness used during the attack game consists of the 2v+ 2 coefficients of the polyno-

mials A0(·), B0(·) and can be represented by a vector α uniformly distributed in Z
(2v+2)×1
q :

α
.
= (a0, a1, . . . , av, b0, b1, . . . , bv)T .

Consider the vector β ∈ Z
(2v+2)×1
q defined as:

β
.
= (X0,X1, . . . ,Xv,A1, . . . ,Av, r

′′∗)T

where X0
.
= A0(0) + wB0(0), X`

.
= A0(`) + wB0(`) and A`

.
= A0(x`) for ` = 1, . . . , v, and r′′∗

.
= logg u

′′∗.
It is clear by inspection that all the information in the adversary’s view is completely determined by

V and β. Thus, if the distribution of V and β is the same in both games G2
1 and G3

1, it will follow that
Pr[T 3

1 ] = Pr[T 2
1 ]. Since the definition of r′′∗ is the only difference between game G2

1 and G3
1, and in G3

1

the value of [r′′∗]3 is chosen uniformly from Zq, independently of anything else, it suffices to show that the
distribution of [r′′∗]2, conditioned on V and the first 2v + 1 entries of β, is also uniform in Zq.

In game G2
1, the quantities in V , β and α are related according to the following matrix equation:

[β]2 = M ·α + γ

where [β]2 denotes the value of β in game G2
1 (i.e. when the value of the last entry is [r′′∗]2), γ ∈ Z

(2v+2)×1
q

is the vector

γ
.
=





























0
0
...
0
0
...
0

r∗(D0,t∗(0)) + wr′∗(E0,t∗(0)) + logg Mσ∗





























and M ∈ Z
(2v+2)×(2v+2)
q is the matrix

M
.
=





























1 0 . . . 0 w 0 . . . 0
1 1 . . . 1 w w . . . w

...
...

1 v . . . vv w wv . . . wvv

1 x1 . . . xv
1 0 0 . . . 0

...
...

1 xv . . . xv
v 0 0 . . . 0

r∗ 0 . . . 0 wr′∗ 0 . . . 0





























The above matrix M is square, has full rank (provided that r∗ 6= r′∗ and w 6= 0) and it describes all
the constraints on the (2v + 2) unknowns represented by α, that can be derived from the information in

18



the adversary’s view in G2
1. In particular, the fact that no New-period operation occurred during execution

of step 7. of the attack game guarantees that the identities included in the public key PK∗ that was used
to create the challenge ciphertext ψ∗ are exactly those of the users corrupted by the adversary. Hence, the
constraints on α arising from the last v components of the challenge ciphertext ψ∗ can be obtained as linear
combination of the constraints specified by M.

As soon as we fix a value for V , the first 2v + 1 entries of vector γ and the first v + 1 rows of matrix

M are completely fixed, but α is still distributed uniformly and independently at random in Z
(2v+2)×1
q . If

we additionally fix the value of the first (v + 1) components of [β]2, the initial public key PK0 is fixed; it
follows that the first identity x1 that A chooses to corrupt is also fixed and thus the (v + 2)th row of M is
determined. Fixing also a value for A1 (which is the (v + 2)th entry of [β]2), the value of B1 is fixed too, so
that all the information on which the adversary can base her choice of x2 is fixed, and thus the (v + 3)th
row of M is determined as well. By a similar reasoning, it follows that fixing the first (v + `+ 1) entries of
[β]2 determines the (v + ` + 2)th row of M, for ` = 1, . . . , v. In particular, fixing all the entries of the [β]2
but the last, fixes all the information that adversary A sees before asking for her challenge: thus, her choice
of M0, M1 is determined, so that the last entry of γ is fixed, too. Hence, by Lemma 1, we can conclude that
the conditional distribution of [r′′∗]2, w.r.t. V and to all the other components of [β]2, is also uniform over
Zq, from which it follows that

Pr[T 3
1 ] = Pr[T 2

1 ]. (17)

Case 2. We now discuss the case in which the “special” New-period operation takes place: in particular, let
Dt̂(·) and E t̂(·) be the randomizing polynomials used in such New-period operation. Consider the quantity

V
.
=
(

Coins, w, {ctj , r
t
j}

2v+2
j = 1
t 6= t̂

, {sj , r
t̂
j}

2v+2
j=1 , σ∗, r∗, r′∗

)

where Coins represents the coin tosses of A, w
.
= logg g

′, σ∗ is the random bit chosen by the challenger in step
8. of the attack game, and s1, . . ., s2v+2 are the random elements of G that are encrypted by the “special”

New-period operation in place of the randomizing coefficients dt̂
0, d

t̂
1, . . ., d

t̂
v, and et̂

0, e
t̂
1, . . ., e

t̂
v.

The remaining randomness used during the attack game consists of these randomizing coefficients, along
with the 2v + 2 coefficients of the polynomials A0(·), B0(·) and can be represented by a vector α uniformly

distributed in Z
(4v+4)×1
q , given in Figure 1.

Consider the vector β ∈ Z
(4v+3)×1
q defined in Figure 1: it is clear by inspection that all the information

in the adversary’s view is completely determined by V and β. In particular, the initial public key PK0 is
fixed by β and w; the secret keys of the corrupted users are determined by the choice of β, Coins and w;
the “special” reset message is fixed by PK0, Coins, and all the randomness in V ; the resulting public key
PK t̂ only depends on β and w; and the adversary’s choice of M0 and M1 is fixed by V and the first 4v + 2
entries of β.

Thus, if the distribution of V and β is the same in both games G2
1 and G3

1, it will follow that Pr[T 3
1 ] =

Pr[T 2
1 ]. Since the definition of r′′∗ is the only difference between game G2

1 and G3
1, and in G3

1 the value of
[r′′∗]3 is chosen uniformly from Zq, independently of anything else, it suffices to show that the distribution
of [r′′∗]2, conditioned on V and the first 4v + 2 entries of β, is also uniform in Zq.

In game G2
1, the quantities in V , β and α are related according to the following matrix equation:

[β]2 = M ·α + γ

where [β]2 denotes the value of β in game G2
1 (i.e. when the value of the last entry is [r′′∗]2) and γ ∈ Z

(4v+3)×1
q

and M ∈ Z
(4v+3)×(4v+4)
q are defined in Figure 1.

The matrix M in Figure 1 describes all the constraints on the (4v + 4) unknowns represented by α,
that can be derived from the information in the adversary’s view in game G2

1. Notice that M includes the
constraints on α arising from the last v components of the challenge ciphertext ψ∗. Moreover, since we are
assuming that the “special” New-period operation took place during the execution of step 7. of the attack
game, and that the adversary never revokes the users she corrupts, the identities z∗1 , . . ., z∗v specified in the

19



α
.
= (a0, a1, . . . , av, b0, b1, . . . , bv, dt̂

0, d
t̂
1, . . . , d

t̂
v, et̂

0, e
t̂
1, . . . , e

t̂
v)T

β
.
= (X0,X1, . . . ,Xv, X̂0, X̂1, . . . , X̂v,A1, . . . ,Av,X∗

1, . . . ,X
∗

v, r′′∗)T

γ
.
=

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

0
0
...
0

D0,t̂−1(0) + wE0,t̂−1(0)

D0,t̂−1(1) + wE0,t̂−1(1)
...

D0,t̂−1(v) + wE0,t̂−1(v)
0
...
0

r∗(D0,t̂−1(z∗

1) + Dt̂+1,t∗(z∗

1)) + wr′∗(E0,t̂−1(z∗

1) + E t̂+1,t∗(z∗

1))
...

r∗(D0,t̂−1(z∗

v) + Dt̂+1,t∗(z∗

v)) + wr′∗(E0,t̂−1(z∗

v) + E t̂+1,t∗(z∗

v))

r∗(D0,t̂−1(0) + Dt̂+1,t∗(0)) + wr′∗(E0,t̂−1(0) + E t̂+1,t∗(0)) + logg Mσ∗

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

M
.
=

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1 0 . . . 0 w 0 . . . 0 0 0 . . . 0 0 0 . . . 0
1 1 . . . 1 w w . . . w 0 0 . . . 0 0 0 . . . 0

...
...

...
...

1 v . . . vv w wv . . . wvv 0 0 . . . 0 0 0 . . . 0
1 0 . . . 0 w 0 . . . 0 1 0 . . . 0 w 0 . . . 0
1 1 . . . 1 w w . . . w 1 1 . . . 1 w w . . . w

...
...

...
...

1 v . . . vv w wv . . . wvv 1 v . . . vv w wv . . . wvv

1 x1 . . . xv
1 0 0 . . . 0 0 0 . . . 0 0 0 . . . 0

...
...

...
...

1 xv . . . xv
v 0 0 . . . 0 0 0 . . . 0 0 0 . . . 0

r∗ r∗z∗

1 . . . r∗z∗v
1 wr′∗ wr′∗z∗

1 . . . wr′∗z∗v
1 r∗ r∗z∗

1 . . . r∗z∗v
1 wr′∗ wr′∗z∗

1 . . . wr′∗z∗v
1

...
...

...
...

r∗ r∗z∗

v . . . r∗z∗v
v wr′∗ wr′∗z∗

v . . . wr′∗z∗v
v r∗ r∗z∗

v . . . r∗z∗v
v wr′∗ wr′∗z∗

v . . . wr′∗z∗v
v

r∗ 0 . . . 0 wr′∗ 0 . . . 0 r∗ 0 . . . 0 wr′∗ 0 . . . 0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

Fig. 1. Vectors α ∈ Z
(4v+4)×1
q , β ∈ Z

(4v+3)×1
q and γ ∈ Z

(4v+3)×1
q and the matrix M ∈ Z

(4v+3)×(4v+4)
q used in the last

information-theoretic argument of Lemma 3. Notation: r′′∗ .
= logg u′′∗, X0

.
= A0(0) + wB0(0), X̂0

.
= At̂(0) + wB t̂(0),

and for ` = 1, . . . , v, X`
.
= A0(`) + wB0(`), X̂`

.
= At̂(`) + wB t̂(`), A`

.
= A0(x`) and X∗

`

.
= r∗At∗(z∗

` ) + wr′∗Bt∗(z∗

` ).

public key PKt∗ that is used to create the challenge ciphertext are all different from the identities x1, . . .,
xv of the corrupted users, so that M has full rank, provided that r∗ 6= r′∗ and w 6= 0.

As soon as we fix a value for V , the first 4v + 2 entries of vector γ and the first 2v + 2 rows of matrix

M are completely fixed, but α is still distributed uniformly and independently at random in Z
(4v+4)×1
q . If

we additionally fix the value of the first (2v + 2) components of [β]2, the initial public key PK0 is fixed (in

fact, the public key PK t̂ resulting from the “special” New-period operation gets fixed, too); it follows that

20



the first identity x1 that A chooses to corrupt is also fixed and thus the (2v + 3)th row of M is determined.
Fixing also a value for A1 (which is the (2v + 3)th entry of [β]2), the value of B1 is fixed too, so that all
the information on which the adversary can base her choice of x2 is fixed, and thus the (2v + 4)th row of
M is determined as well. By a similar reasoning, it follows that fixing the first (2v + ` + 2) entries of [β]2
determines the (2v + ` + 3)th row of M, for ` = 1, . . . , v. In particular, fixing the first 3v + 2 entries of
[β]2 fixes all the information that adversary A sees before asking for her challenge: thus, the identities z∗1 ,
. . ., z∗v , as well as the two messages M0, M1 chosen by A are determined, so that all the remaining rows of
M, as well as the last entry of γ get fixed, too. Hence, by Lemma 1, we can conclude that the conditional
distribution of [r′′∗]2, w.r.t. V and to all other components of [β]2, is uniform over Zq, from which it follows
that Equation (17) holds in this case, too.

Game G4
1. Game G4

1 is defined to be identical to G2. Thus, G4
1 differs from G3

1 only in that the values u∗

and u′∗ in the challenge ciphertext ψ∗ are consistent, rather than being nearly independent, as in game G3
1.

Namely, the values u∗ and u′∗ are now computed as u∗
.
= gr∗

and u′∗
.
= g′r

∗

, for the same random r∗ ∈ Zq. It
follows that any difference in behavior between games G3

1 and G4
1 can be used to distinguish Diffie-Hellman

tuples from totally random tuples. Hence,

∣

∣Pr[T 4
1 ]− Pr[T 3

1 ]
∣

∣ ≤ AdvDDHG(k). (18)

Combining Equations (15), (16), (17) and (18), the thesis follows. ut

6 Dealing with Traceability

The goal of a tracing algorithm is to obtain the identity of at least one of the pirates who colluded in creating
a given “pirate decoder” D which, as in previous work, is assumed to be stateless. In this section we present a
formal model for traceability and two tracing algorithms that can be integrated within the scheme described
in Section 4.

The first method, a black-box algorithm, repeatedly calls a black-box confirmation subroutine that, given
a pirate decryption device and a subset of at most m suspected users,5 checks whether the suspected set
includes all the user-keys that were used to generate the pirate device, and if so outputs the identity of one
of the traitors.

The second method, a non-black-box algorithm, receives as input a “valid” key extracted from a pirate
device which was constructed using the keys of at most m users and deterministically recovers the identities
of all the traitors.

6.1 Model for Traceability

The traceability adversary operates similarly to the revocation adversary described in Section 5. Namely,
after receiving the initial public key of the system, adversary A can interleave (in any adaptively-chosen
order) up to m Join queries, upon which A receives the secret keys of the corresponding users (the traitors),
and a polynomial number of Revoke queries. Notice that each Revoke will change the public key, and the
adversary monitors these changes as well. Also notice that the final set of revoked users is likely very different,
and typically disjoint from the set T of traitors. At the end, A outputs a pirate decoder D which presumably
works well (in some sense more precisely clarified below), with the final public key PKA.

Formal Model for Traceability Adversary. We formalize the above attack scenario in terms of the
traceability adversary attack game Gm

trt(1
k), played between a challenger and the adversary.

1. Let 〈PK,MSK〉 := Setup(1k).
2. Let L := 0, T := ∅.

5 Recall, m denotes the collusion threshold, and should not be confused with the revocation threshold v defined in
Section 4; e.g., in our schemes m = b v

2
c.

21



3. Let state := 〈L,PK,MSK, T 〉.
4. D← AJoin(state,·),Revoke(state,·)(state.PK).
5. If |T | > m then exit.
6. Parse state as 〈L,PKA,MSKA, T 〉.
7. Output 〈D, PKA,MSKA, T 〉.

The definitions of the Join and Revoke oracles is the same as in Section 5.1, except that the role of the
set Corr is now played by the set T .

Definition 8. For any public key PK, define the success probability of a decoder D as:

SuccPK(D)
.
= Pr[M ′ = M | M ←r G;ψ∗ ←r E(PK,M);

M ′ ←r D(ψ∗)]

where the probability is over the random choice of M , the randomness used to create the challenge ciphertext
ψ∗ and the coin tosses of D.

Notice that the pirate decoder D expects to receive a ciphertext created under the public key PKA, but
the quantity SuccPK(D) can be defined for any public key anyway. Clearly, if D could notice the change,
then it could stop working properly: in this case we can assume that it outputs a message M ′ 6= M .

The job of the tracing algorithm is to find one or all of the (at most) m traitors whose keys were used by
A in building D. The precise security guarantees depend on whether tracing is black-box or not. We describe
both tracing methods in Section 6.2 and 6.3, respectively.

6.2 Black-Box Tracing

In the black-box model, the tracing algorithm is only allowed to query the pirate decoder D on a polynomial
number of a random-looking ciphertexts, and from the plain observation of D’s input/output behavior, the
tracing algorithm should successfully in identifying (at least) one of the traitors.

This form of tracing is the most desirable, as it can be applied to any stateless pirate decoder. Similarly to
previous work [3, 19, 21], though, the algorithm presented below only achieves a weaker variant of black-box
tracing, called black-box confirmation. Informally, a black-box confirmation algorithm is a subroutine that
tests whether a given set Susp of at most m suspected users does include all the traitors that cooperated to
construct a given pirate decoder D, and if so, it outputs at least one such pirate. On a pessimistic note, this
means that our tracing algorithm might have to go through all m-element subsets of the user universe U
to do full-fledged tracing. However, we point out that: (1) in many cases a lot of partial information about
the set of corrupted users makes the search space dramatically smaller; (2) all previous public-key traitor
tracing schemes suffer from the same problem; (3) as observed in [14], the problem seems to be inherent to
this setting.

However, we significantly improve upon previous black-box confirmation algorithms in the following
respects: (1) formal modeling of the problem; (2) our algorithm allows the adversary to adaptively corrupt
players before building the pirate decoder; (3) our algorithm can be successfully applied to pirate decoders
that work on at least an ε-fraction of correctly formed messages (rather than with probability 1), where ε
is the desired threshold below which the decoder is considered “useless” (following the “threshold tracing”
approach of [18]).

Definition 9 (Black-Box Confirmation Algorithm).
A Black-Box Confirmation (BBC) algorithm is a probabilistic, polynomial time oracle machine, taking as
oracle input a pirate decoder D, and as regular input a public key PK, the corresponding master secret key
MSK, and a set Susp of suspected traitors. Its output is either a user’s identity i or the special symbol ?.

Definition 10 (ε-Black-Box Confirmation Property).
Let A be any probabilistic, polynomial-time adversary, and let 〈D, PKA, MSKA, T 〉 be the output resulting
from the adversary playing the traceability attack game G

m
trt(1

k) with the challenger. A Black-Box Confir-
mation algorithm BBC satisfies ε-Black-Box Confirmation if for any PPT adversary A playing the G

m
trt(1

k)
game, the following two properties hold with all but negligible probability:

22



– Confirmation: whenever T ⊆ Susp, then the output of BBCD(PKA,MSKA, Susp) is some identity
i ∈ T .

– Soundness: whenever BBCD(PKA,MSKA,Susp) outputs i 6= ?, then i ∈ T .

Black-Box Confirmation Algorithm At a high level, our black-box confirmation algorithm BBC works
as follows. Based on the current set I of suspected users (initially set to Susp) and using the master secret
key MSKA, it modifies the public key PKA into a fake public key PK(I). It then estimates the probability

δ(I)
.
= SuccPK(I)(D)

by observing the behavior of D when fed with encryptions of the form E(PK(I),M), for random messages
M . The Chernoff bound implies that the latter estimation can be done quickly and accurately (by computing
statistics from repeated sampling), provided δ(I) is “large enough” (specifically, at least ε/m). Now, BBC

takes any index i ∈ I, and accurately estimates δ(I \ {i}). If the difference between δ(I) and δ(I \ {i}) is
“non-trivial” (specifically, at least ε/2m), it proclaims i as a traitor. Otherwise, it sets I := I \ {i}, and
repeats the entire procedure until I = ∅ (in which case it outputs ?).

The last main detail to be filled in is how the algorithm generates the fake public key PK(I). Recall from
Section 4 that the master secret key MSKA consists of two random polynomials over Z

v
q [x]. Let t̄ be the total

number of New-period operations that occur during the entire game, and for t = 1, . . . , t̄, let ct1, . . ., c
t
2v+2

be the coefficients of the randomizing polynomials Dt(·) and Et(·) used in the tth New-period operation. For
t = 1, . . . , t̄, and j = 1, . . . , 2v + 2, let rt

j be the randomness used to encrypt (the encoding of) coefficient

ctj in the tth reset message. By Equation (8), (At̄(·), B t̄(·)) denotes the master secret key corresponding to
the public key PKA. Given the set I, we create two polynomials A′(·) and B′(·) uniformly distributed over
Z

v
q [x] except they agree with At̄(·) and B t̄(·) on points in I:

A′(xs) = At̄(xs) B′(xs) = B t̄(xs), ∀s ∈ I.

Notice that, since |I| ≤ m ≤ v/2, this creates no problem. We then create the public key PK(I) as if the
master secret key were MSK ′ = (A′(·), B′(·)) rather than MSKA = (At̄(·), B t̄(·)). Specifically, we define

PK(I)
.
= (g, g′, y′, 〈z`, h

′
`〉

v
`=1).

where y′
.
= gA′(0) · g′B

′(0), and h′`
.
= gA′(z`) · g′B

′(z`), for ` = 1, . . . , v.

Correctness of Black-Box Tracing The correctness of the black-box tracing algorithm described above
follows from Theorem 2 and Theorem 3 stated below. Theorem 2 implies that if the decoder was useful at
the start (i.e., SuccPKA

(D) ≥ ε) and T ⊆ Susp, then the decoder cannot “notice” that PKA was changed
to PK(Susp), i.e. δ(Susp) & ε.6 Coupled with the obvious fact that δ(∅) is negligible (since M is encrypted
with a totally random one-time pad), we see that there must be a time when δ(I) changes by a non-trivial
amount (i.e., at least by ε/2m) when we remove some i ∈ I. This i will then be output by our algorithm,
and since i cannot be an innocent user (by Theorem 3 below), i must be one of the traitors. This shows the
confirmation property.

Theorem 2. Under the DDH assumption, if T ⊆ Susp and |Susp| ≤ v, then |δ(Susp) − SuccPKA
(D)| is

negligible.

Proof. We again follow the structural approach of defining a sequence of “indistinguishable” games G0,G1, . . .,
all operating over the same underlying probability space. Each of these games consists of the BBC algorithm
sending a ciphertext ψ∗ to the pirate decoder D; different games only differs in the way ψ∗ is computed. In
the original game G0, the goal of the decoder D is to output a message M ′ which is D’s best guess at the
random message M encrypted within ψ∗; for each game Gj , let Tj be the event that M = M ′ in Gj .

6 The relation & is meant to indicate that δ(Susp) is greater than ε minus negligible terms.

23



Game G0: This game defines the probability SuccPKA
(D). In this game, the BBC algorithm takes as input

the public key PKA, the corresponding master secret key MSKA and a set Susp of suspected users; it then
chooses a message M ←r G and, using the public key PKA, encrypts it as follows:

E1. r ←r Zq

E2. u← gr

E3. u′ ← g′r

E4. u′′ ←M · gAt̄(0)rg′B
t̄(0)r

E5. u` ← gAt̄(z`)rg′B
t̄(z`)r, ` = 1, . . . , v

E6. ψ∗ ← 〈u, u′, u′′, 〈z1, u1〉, . . . , 〈zv, uv〉〉

By definition, we have that
Pr[T0] = SuccPKA

(D). (19)

Game G1: Game G1 is identical to game G0, except that in game G1 steps E4 and E5 are substituted
with:

E4′. u′′ ←M · uAt̄(0)u′B
t̄(0)

E5′. u` ← uAt̄(z`)u′B
t̄(z`), ` = 1, . . . , v

Notice that the point of these changes is just to make explicit any functional dependency of ψ∗ on the
quantities u and u′. Since we just made a conceptual change, it clearly holds that

Pr[T1] = Pr[T0]. (20)

Game G2: To define game G2, we make more changes to the encryption algorithm as follows:

E1′. r ←r Zq; r′ ←r Zq \ {r}

E3′. u′ ← g′r
′

Notice that while in game G1 the value u and u′ are obtained using the same value r, in game G2 they
are nearly independent, being subject only to r 6= r′. Therefore, using a standard reduction argument, any
non-negligible difference in behavior between games G1 and G2 can be used to construct a PPT adversary
able to distinguish Diffie-Hellman tuples from totally random tuples with non-negligible advantage. Hence,

∣

∣Pr[T2]− Pr[T1]
∣

∣ ≤ AdvDDHG(k). (21)

Game G3: To turn game G2 into game G3, we consider the set Susp and construct the public key PK(Susp)
as described above; specifically, two random polynomials A′(·) and B′(·) are chosen such that

A′(xs) = At̄(xs) B′(xs) = B t̄(xs), ∀s ∈ Susp (22)

and PK(Susp) is set to be:

PK(Susp)
.
= 〈g, g′, gA′(0)g′B

′(0), 〈z`, g
A′(z`)g′B

′(z`)〉v`=1〉.

Then, we change steps E4′ and E5′ of the encryption algorithm of game G2 as follows:

E4′′. u′′ ←M · uA′(0)u′B
′(0)

E5′′. u` ← uA′(z`)u′B
′(z`), ` = 1, . . . , v

24



Using the technique outlined in Section 5.2, in Lemma 4 below, we show that

Pr[T3] = Pr[T2]. (23)

Game G4: In game G4, we “undo” the changes of game G2, restoring lines E1 and E3 of the encryption
oracle to their original values:

E1′′. r ←r Zq

E3′′. u′ ← g′r

Notice that in game G4 the value u and u′ are again obtained using the same value r, whereas in game G3

they are nearly independent, being subject only to r 6= r′. Therefore, using a standard reduction argument,
any non-negligible difference in behavior between games G3 and G4 can be used to construct a PPT adversary
able to distinguish Diffie-Hellman tuples from totally random tuples with non-negligible advantage. Hence,

∣

∣Pr[T4]− Pr[T3]
∣

∣ ≤ AdvDDHG(k). (24)

Finally, observe that in G4 the encryption of the random message M is obtained using the public key
PK(Susp): thus, game G4 is exactly the game which defines the probability δ(Susp) i.e.,

Pr[T4] = δ(Susp). (25)

Combining Equations (19), (20), (21), (23), (24) and (25), we can conclude that A has only a negligible
chance to tell whether the message M was encrypted under the public keys PKA or PK(Susp); more
precisely:

|δ(Susp)− SuccPKA
(D)| ≤ 2 AdvDDHG(k).

ut

Lemma 4. Pr[T3] = Pr[T2]

Proof. To prove the Lemma, we consider all the quantities that can affect event T2 in game G2 and event T3

in game G3, and then we show that these quantities are distributed according to the same joint distribution
in both games.

Consider the quantity:

V
.
= (CoinsA,CoinsD, w,M, r, r′, {{ctj , r

t
j}

2v+2
j=1 }

t̄
t=1)

where CoinsA denotes the coin tosses of A, CoinsD denotes the coin tosses of D, w
.
= logg g

′, M is the random
message encrypted within ψ∗, r and r′ are the random values used to create ψ∗, and

{{ctj , r
t
j}

2v+2
j=1 }

t̄
t=1

represents all the randomness used in the t̄ New-period operations that took place during the Gm
trt(1

k) attack
game.

The remaining randomness used during games G2 and G3 consists of the 4v + 4 coefficients of the
polynomials A0(·), B0(·) (chosen by the Setup algorithm in step 1. of the Gm

trt(1
k) attack game) and A′(·),

B′(·) (used in game G3). This randomness can be represented with the vector

α
.
= (a0, a1, . . . , av, b0, b1, . . . , bv)T

which is uniformly distributed in Z
(2v+2)×1
q , and the vector

α′ .= (a′0, a
′
1, . . . , a

′
v, b

′
0, b

′
1, . . . , b

′
v)T

25



which is uniformly distributed in Z
(2v+2)×1
q , subject to the constraints arising from imposing Equation (22).

Let T = {t1, . . . , tm} be the set of traitors and set

Aj
.
= At̄(xtj

) Bj
.
= B t̄(xtj

), j = 1, . . . ,m.

Notice that, since T ⊆ Susp, for j = 1, . . . ,m, it holds that Aj = A′(xtj
) and Bj = B′(xtj

).

Consider the quantity β̄ ∈ Z
(v+m+1)×1
q defined as:

β̄
.
= (X0,X1, . . . ,Xv,A1, . . . ,Am)T

where X0
.
= A0(0) + wB0(0), and X`

.
= A0(`) + wB0(`), for ` = 1, . . . , v.

It is clear by inspection that all the information in the view of the adversary A during the attack game
Gm

trt(1
k) is completely determined by V and β̄. In particular, the initial public key PK0 is fixed by β̄ and

w, and the secret keys of the traitors are determined by the choice of β̄, CoinsA and w.
Besides the information in A’s view, which is completely determined by the value of V and β̄, the only

other quantity affecting D’s behavior is the ciphertext ψ∗. This ciphertext is computed differently in games
G2 and G3: for the sake of clarity, we will denote with [ψ∗]2 and [ψ∗]3 the value of such quantity in game
G2 and G3, respectively. We now want to show that, conditioned on all the other information in D’s view,
[ψ∗]2 and [ψ∗]3 are distributed according to the same distribution in the two games.

In game G2, the ciphertext [ψ∗]2 sent to the decoder is completely determined by V , β̄ and by the
v-degree polynomial X t̄(·)

.
= rAt̄(·) + wr′B t̄(·). Similarly, in game G3, the ciphertext [ψ∗]3 is completely

determined by V , β̄ and by the v-degree polynomial X ′(·)
.
= rA′(·) +wr′B′(·). Moreover, [ψ∗]2 depends on

V , β̄ and X t̄(·) according to the same functional dependence of [ψ∗]3 upon V , β̄ and X ′(·). Therefore, to
prove the Lemma, it suffices to show that, conditioning on any fixed values of V and β̄, X t̄(·) and X ′(·) are
distributed according to the same conditional probability distribution; namely, both are random polynomials
over Z

v
q [x], subject to the constraint that their values at xtj

is rAj + wr′Bj , for j = 1, . . . ,m.

By Lagrange interpolation, X t̄(·) can be identified with its value at the points 0, 1, . . ., v −m, xt1 , . . .,
xtm

; define

Xt̄
`

.
= X t̄(`), ` = 0, . . . , v −m

and
Xt̄

v−m+j

.
= X t̄(xij

), j = 1, . . . ,m.

Similarly, we can also identify X ′(·) with its value at the same v + 1 points; define

X′
`

.
= X ′(`), ` = 0, . . . , v −m

and
X′

v−m+j

.
= X ′(xtj

), j = 1, . . . ,m.

As noticed above, the assumption that T ⊆ Susp implies that for j = 1, . . . ,m:

At̄(xtj
) = A′(xtj

) = Aj , B t̄(xtj
) = B′(xtj

) = Bj .

Therefore, it follows that
Xv−m+j = X′

v−m+j , j = 1, . . . ,m. (26)

It only remains to be proven that, conditioning on fixed values of V and β̄, the tuple Xt̄
0, . . ., Xt̄

v−m and
the tuple X′

0, . . ., X′
v−m are distributed according to same joint conditional distribution. (Notice that fixing

a value for V and β̄, immediately fixes a value for the tuple Xt̄
v−m+j , j = 1, . . ., m, which by (26) is equal

to X′
v−m+j , j = 1, . . ., m.)

Recall that, in game G3, the polynomials A′(·) and B′(·) are chosen uniformly at random from Z
v
q [x],

independently from anything else, but subject to the constraints in (22). Thus, the polynomial X ′(·) = rA′(·)
+ wr′B′(·) is also random in Z

v
q [x], subject to the constraint that its value at xs is

rAt̄(xs) + wr′B t̄(xs), ∀s ∈ Susp.

26



Therefore, conditioning on fixed values of V and β̄, the tuple X′
0, . . . ,X

′
v−m is distributed uniformly at

random in Z
(v−m+1)×1
q . Hence, it suffices to show that, for ` = 0, . . ., v −m, the conditional distribution of

Xt̄
` w.r.t. V , β̄ and Xt̄

0, . . . ,X
t̄
`−1 is uniform over Zq. To this aim, fix ` ∈ {0, . . ., v −m}, and consider the

following matrix equation:
β` = M` ·α + γ`

where β` ∈ Z
(v+m+`+2)×1
q is the vector

β`
.
= (X0,X1, . . . ,Xv,A1, . . . ,Am,X

t̄
0,X

t̄
1, . . . ,X

t̄
`)

T ,

γ` ∈ Z
(v+m+`+2)×1
q is the vector

γ`
.
=











































0
0
...
0

D0,t̄(xt1)
...

D0,t̄(xtm
)

rD0,t̄(0) + wr′E0,t̄(0)

rD0,t̄(1) + wr′E0,t̄(1)
...

rD0,t̄(`) + wr′E0,t̄(`)











































and M` ∈ Z
(v+m+`+2)×(2v+2)
q is the matrix

M`
.
=











































1 0 . . . 0 w 0 . . . 0
1 1 . . . 1 w w . . . w

...
...

1 v . . . vv w wv . . . wvv

1 xt1 . . . x
v
t1

0 0 . . . 0
...

...
1 xtm

. . . xv
tm

0 0 . . . 0
r 0 . . . 0 wr′ 0 . . . 0
r r . . . r wr′ wr′ . . . wr′

...
...

r r` . . . r`v wr′ wr′` . . . wr′`v











































By inspection, it is possible to see that the rows of matrix M` are linearly independent, provided that r 6= r′

and w 6= 0: thus, the rank of M` is v +m+ `+ 2. As soon as we fix V , vector γ` and the first v+ 1 rows of

M` are determined, but α is still distributed uniformly and independently at random in Z
(2v+2)×1
q . Similarly

to the proof of Lemma 3, it is also possible to show that fixing the first v + j entries of β̄ determines the
(v+j+1)th row of M`, for j = 1, . . . ,m; and that moreover, fixing the first v+m+1 entries of β̄ determines
all the remaining rows of M`.

Hence, by Lemma 1, we can conclude that the conditional distribution of Xt̄
` w.r.t. (V , β̄, Xt̄

0, . . ., Xt̄
`−1)

is uniform over Zq, ∀` ∈ {0, . . . , v−m}. In other words, the value of X t̄(·) at any point is uniformly random,
subject to the constraint

Xt̄(xtj
) = rAj + wr′Bj , ∀tj ∈ T .

Thus, (V , β̄, X t̄(·))) has the same joint distribution as (V , β̄, X ′(·), completing the proof. ut

27



We now move on to prove the soundness of the BBC algorithm, showing that it can accuse an innocent
user with at most negligible probability. Informally this is true because, under the DDH assumption it is
impossible to notice if the values A′(xi) and B′(xi) (which are unknown to the adversary since i is assumed
to be honest), were replaced by random noise A′′(xi) and B′′(xi). Thus, the behavior of the decoder will be
the same regardless of whether PK(I) or PK(I \{i}) was used to encrypt the ciphertext. Since our algorithm
only accuses a user i when a sensible change occurs in the decryption capability of the pirate decoder, it
follows that an innocent user will be blamed with at most negligible probability.

Theorem 3. Under the DDH assumption, if |I| ≤ v and i 6∈ T , then |δ(I)− δ(I \ {i})| is negligible.

Proof. Proceeding as in the proof of Theorem 2, we define a sequence of “indistinguishable” games G0, G1,
. . . : for each game Gj , let Tj be the event that decoder D correctly decrypts the challenge sent by the BBC

algorithm in game Gj .

Game G0: This game describes the experiment which defines the value of δ(I). In this game, the decoder D

is fed with ciphertexts obtained encrypting random messages under the fake public key PK(I), defined as:

PK(I) = 〈g, g′, gA′(0)g′B
′(0), 〈z`, g

A′(z`)g′B
′(z`)〉v`=1〉

where A′(·) and B′(·) are random v-degree polynomials subject to:

A′(xs) = At̄(xs) B′(xs) = B t̄(xs), ∀s ∈ I. (27)

More precisely, the BBC algorithm chooses a random message M and encrypts it as follows:

E1. r ←r Zq

E2. u← gr

E3. u′ ← g′r

E4. u′′ ←M · gA′(0)rg′B
′(0)r

E5. u` ← gA′(z`)rg′B
′(z`)r, ` = 1, . . . , v

E6. ψ∗ ← 〈u, u′, u′′, 〈z1, u1〉, . . . , 〈zv, uv〉〉

By definition, we have that:
Pr[T0] = δ(I). (28)

Game G1: Game G1 is identical to game G0, except that in game G1 steps E4 and E5 are substituted
with:

E4′. u′′ ←M · uA′(0)u′B
′(0)

E5′. u` ← uA′(z`)u′B
′(z`), ` = 1, . . . , v

Notice that the point of these changes is just to make explicit any functional dependency of ψ∗ on the
quantities u and u′. Since we just made a conceptual change, it clearly holds that

Pr[T1] = Pr[T0]. (29)

Game G2: Game G2 is identical to game G1, except that in game G2 steps E1 and E3 are substituted
with:

E1′. r ←r Zq; r′ ←r Zq \ {r}

E3′. u′ ← g′r
′

28



Notice that while in game G1 the value u and u′ are obtained using the same value r, in game G2 they
are nearly independent, being subject only to r 6= r′. Therefore, using a standard reduction argument, any
non-negligible difference in behavior between games G1 and G2 can be used to construct a PPT adversary
able to distinguish Diffie-Hellman tuples from totally random tuples with non-negligible advantage. Hence,

∣

∣Pr[T2]− Pr[T1]
∣

∣ ≤ AdvDDHG(k). (30)

Game G3: To turn game G2 into game G3, we consider the set I \ {i} and construct the public key
PK(I \ {i}): two new random v-degree polynomials A′′(·) and B′′(·) are chosen such that

A′′(xs) = At̄(xs) B′′(xs) = B t̄(xs), ∀s ∈ I \ {i} (31)

and PK(I \ {i}) is set to be:

PK(I \ {i})
.
=〈g, g′, gA′′(0)g′B

′′(0), 〈z`, g
A′′(z`)g′B

′′(z`)〉v`=1〉.

Notice that, for s ∈ I \ {i}, it holds that A′′(xs) = A′(xs) and B′′(xs) = B′(xs).
Finally, we change steps E4′ and E5′ of the encryption algorithm as follows:

E4′′. u′′ ←M · uA′′(0)u′B
′′(0)

E5′′. u` ← uA′′(z`)u′B
′′(z`), ` = 1, . . . , v

Using the technique described in Section 5.2, in Lemma 5 below, we show that

Pr[T3] = Pr[T2]. (32)

Game G4: In game G4, we “undo” the changes of game G2, restoring lines E1 and E3 of the encryption
oracle to their original values:

E1′′. r ←r Zq

E3′′. u′ ← g′r

Notice that in game G4 the value u and u′ are again obtained using the same value r, whereas in game G3

they are nearly independent, being subject only to r 6= r′. Therefore, using a standard reduction argument,
any non-negligible difference in behavior between games G3 and G4 can be used to construct a PPT adversary
able to distinguish Diffie-Hellman tuples from totally random tuples with non-negligible advantage. Hence,

∣

∣Pr[T4]− Pr[T3]
∣

∣ ≤ AdvDDHG(k). (33)

In game G4, the encryption of the random message M is obtained using the public key PK(I \ {i}):
thus, game G4 is exactly the game defining δ(I \ {i}) i.e.,

Pr[T4] = δ(I \ {i}). (34)

By Equations (28), (29), (30), (32), (33) and (34), we can conclude that the adversary has only a negligible
chance to tell whether the message M was encrypted under PK(I) or PK(I \ {i}); more precisely:

|δ(I)− δ(I \ {i})| ≤ 2 AdvDDHG(k).

ut

Lemma 5. Pr[T3] = Pr[T2]

29



Proof. To prove the Lemma, we consider all the quantities that can affect event T2 in game G2 and event T3

in game G3, and then we show that these quantities are distributed according to the same joint distribution
in both games.

Let m̄
.
= |T ∩ I|, where T = {t1, . . . , tm} is the set of traitors; w.l.o.g. assume that T ∩ I = {t1, . . . , tm̄}.

Also, set
Aj

.
= At̄(xtj

) Bj
.
= B t̄(xtj

), j = 1, . . . ,m.

Notice that, since i 6∈ T , for 1 ≤ j ≤ m̄ it also holds that:

Aj = A′(xtj
) = A′′(xtj

) Bj = B′(xtj
) = B′′(xtj

).

Consider the quantity:

V
.
= (CoinsA,CoinsD, w,M, r, r′, {{ctj , r

t
j}

2v+2
j=1 }

t̄
t=1)

where CoinsA denotes the coin tosses of A, CoinsD denotes the coin tosses of D, w
.
= logg g

′, X`
.
= (A0(`) +

B0(`)) for ` = 0, . . . , v, M is the random message encrypted within ψ∗, r and r′ are the random values used
to create ψ∗, and

{{ctj , r
t
j}

2v+2
j=1 }

t̄
t=1

represents all the randomness used in the t̄ New-period operations that took place during the attack game
Gm

trt(1
k).

The remaining randomness used during games G2 and G3 consists of the 6v + 6 coefficients of the
polynomials A0(·), B0(·) (chosen by the Setup algorithm in step 1. of the Gm

trt(1
k) attack game), A′(·), B′(·)

(used in game G2), and A′′(·), B′′(·) (used in game G3). This randomness can be represented with the vector

α
.
= (a0, a1, . . . , av, b0, b1, . . . , bv)T

which is uniformly distributed in Z
(2v+2)×1
q , the vector

α′ .= (a′0, a
′
1, . . . , a

′
v, b

′
0, b

′
1, . . . , b

′
v)T

which is uniformly distributed in Z
(2v+2)×1
q , subject to the constraints arising from imposing Equation (27),

and the vector
α′′ .= (a′′0 , a

′′
1 , . . . , a

′′
v , b

′′
0 , b

′′
1 , . . . , b

′′
v)T

which is uniformly distributed in Z
(2v+2)×1
q , subject to the constraints arising from imposing Equation (31).

Consider the quantity β̄ ∈ Z
(v+m̄+1)×1
q defined as:

β̄
.
= (X0,X1, . . . ,Xv,A1, . . . ,Am̄)T

where X0
.
= A0(0) + wB0(0), and X`

.
= A0(`) + wB0(`), for ` = 1, . . . , v.

It is clear by inspection that all the information in the view of the adversary A during the attack game
Gm

trt(1
k) is completely determined by V and β̄. In particular, the initial public key PK0 is fixed by V , and

the secret keys of the traitors are determined by the choice of β̄, CoinsA and w.
Besides the information in A’s view, the only other quantity affecting D’s behavior is the ciphertext ψ∗.

This ciphertext is computed differently in games G2 and G3: for the sake of clarity, we will denote with
[ψ∗]2 and [ψ∗]3 the value of such quantity in game G2 and G3, respectively. We now want to show that,
conditioned on all the other information in D’s view, [ψ∗]2 and [ψ∗]3 are distributed according to the same
distribution in the two games.

In game G2, the ciphertext [ψ∗]2 sent to the decoder is completely determined by V , β̄ and by the v-degree
polynomial X ′ .= rA′(·) +wr′B′(·). Similarly, in game G3, the ciphertext [ψ∗]3 is completely determined by
V , β̄ and by the v-degree polynomial X ′′(·)

.
= rA′′(·) + wr′B′′(·). Moreover, [ψ∗]2 depends on V , β̄ and

X ′(·) according to the same functional dependence of [ψ∗]3 upon V , β̄ and X ′′(·). Therefore, to prove the

30



Lemma, it suffices to show that, conditioning on any fixed values of V and β̄, X ′(·) and X ′′(·) are distributed
according to the same conditional probability distribution.

Recall that, in game G2, the polynomials A′(·) and B′(·) are chosen uniformly at random from Z
v
q [x],

independently from anything else, but subject to the constraints in (27). Thus, the polynomial X ′(·) = rA′(·)
+ wr′B′(·) is also random in Z

v
q [x], subject to the constraint that its value at xs is

rAt̄(xs) + wr′B t̄(xs), ∀s ∈ I.

Similarly, in game G3, the polynomials A′′(·) and B′′(·) are chosen uniformly at random from Z
v
q [x],

independently from anything else, but subject to the constraints in (31). Thus, the polynomial X ′′(·) =
rA′′(·) + wr′B′′(·) is also random in Z

v
q [x], subject to the constraint that its value at xs is

rAt̄(xs) + wr′B t̄(xs), ∀s ∈ I \ {i}.

In other words, the distributions of X ′(·) and X ′′(·) only differ in that the value of X ′(·) at xi is fixed to
be

X′
i

.
= rAt̄(xi) + wr′B t̄(xi)

whereas the value of X ′′(·) at xi is a random element in Zq. Thus, to prove that X ′(·) and X ′′(·) have the
same conditional probability distribution w.r.t. V and β̄, it suffices to show that, conditioning on any fixed
values of V and β̄, the value X′

i is distributed uniformly at random in Zq.
To this aim, consider the following matrix equation:

β = M ·α + γ

where β ∈ Z
(v+m̄+2)×1
q is the vector

β
.
= (X0,X1, . . . ,Xv,A1, . . . ,Am̄,X

′
i)

T ,

γ ∈ Z
(v+m̄+2)×1
q is the vector

γ
.
=





























0
0
...
0

D0,t̄(xt1)
...

D0,t̄(xtm̄
)

rD0,t̄(xi) + wr′E0,t̄(xi)





























and M ∈ Z
(v+m̄+2)×(2v+2)
q is the matrix

M
.
=





























1 0 . . . 0 w 0 . . . 0
1 1 . . . 1 w w . . . w

...
...

1 v . . . vv w wv . . . wvv

1 xt1 . . . x
v
t1

0 0 . . . 0
...

...
1 xtm

. . . xv
tm̄

0 0 . . . 0
r rxi . . . rx

v
i wr

′ wr′xi . . . wr
′xv

i





























By inspection, it is possible to see that the rows of matrix M are linearly independent, provided that r 6= r ′

and w 6= 0: thus, the rank of M is v + m̄ + 2. As soon as we fix V , vector γ and the first v + 1 rows of

31



M are determined, but α is still distributed uniformly and independently at random in Z
(2v+2)×1
q . Similarly

to the proof of Lemma 3, it is also possible to show that fixing the first v + j entries of β̄ determines the
(v+ j+1)th row of M, for j = 1, . . . , m̄; and that moreover, fixing the first v+ m̄+1 entries of β̄ determines
all the remaining rows of M.

Hence, by Lemma 1, we can conclude that the conditional distribution of X′
i w.r.t. V and β̄ is uniform

over Zq. In other words, conditioning on the information seen by the adversary before receiving the challenge
ψ∗, the value of X ′(·) at xi looks random over Zq. It follows that (V , β̄, X ′(·)) has the same joint distribution
as (V , β̄, X ′′(·)), completing the proof. ut

6.3 Non-Black-Box Tracing

In Section 6.3 we describe a non-black-box tracing algorithm which builds on the results of [3, 19], but it
is tailored to our family of representations. Then, in Section 6.3, we analyze its security properties in the
formal model for traceability of Section 6.1, under a non-black-box assumption, given below as Assumption 3.
Before that, however, we develop some notation.

Notation. Recall that in the scheme of Section 4, the secret key of user xi consists of two points A(xi), B(xi),
which can be combined with the system’s public key to obtain two leap vectors to be used in the decryption
algorithm. More precisely, given the current public key

PK
.
= 〈g, g′, y, 〈z1, h1〉, . . . , 〈zv, hv〉〉,

it is possible to construct (by Definition 6) two leap vectors

νA,i
.
= νxi,A

z1,...,zv
νB,i

.
= νxi,B

z1,...,zv

where (A(·), B(·)) is the master secret key corresponding to the current public key PK. By Equations (2)
and (4), νA,i and νB,i agree on the last v components; thus, under the current public key PK, user xi’s
secret key can be compactly rewritten as

δi
.
= 〈(νA,i)0, (νB,i)0, δ

′
i〉

.
= 〈λ

(i)
0 A(xi), λ

(i)
0 B(xi), 〈λ

(i)
1 , . . . , λ(i)

v 〉〉,

where λ
(i)
0 , λ

(i)
1 , . . . , λ

(i)
v are the Lagrange coefficients defined in Equations (3) and (4); recall that, for

notational convenience, we use superscript (i) to make explicit that a given set of Lagrange coefficients is
relative to user xi.

Notice that such vector δi is a representation of y w.r.t. g, g′, h1, . . ., hv; for short, when this is the case,
in the following we will just say that δi is a valid representation of the public key PK. Also notice that any
such valid representation δ of the current public key PK would work for decrypting messages encrypted
with PK; for a generic valid representation

δ
.
= 〈γa, γb, γ1, . . . , γv〉,

we will denote with δ′ its last v entries:
δ′ .= 〈γ1, . . . , γv〉.

In the non-black-box model, the tracing algorithm is assumed to be able of inspecting the content of a
successful pirate decoder, and to extract the secret key hidden within it. More precisely, in designing and
analyzing our non-black-box tracing algorithm, we make the following assumption:

Assumption 3 (Non-Black-Box Assumption)
Let A be any probabilistic, polynomial-time adversary, and let 〈D, PKA, MSKA, T 〉 be the output resulting
from the adversary playing the traceability attack game G

m
trt(1

k) with the challenger. If D can correctly
decrypt random ciphertexts encrypted using PKA (in other words, SuccPKA

(D) = 1), then D contains a
valid representation δ of PKA, and it is possible to reverse-engineer D and extract δ.

32



Assumption 3 is partially supported by Proposition 1 and it is essentially equivalent to what was pre-
viously assumed in [3]. It is also a priori much less restrictive than the non-black-box assumption made in
[19], where the non-black-box analysis is subject to the hypothesis that the illegal key extracted from the
pirate decoder is a convex linear combination of some of the traitors’ keys. In fact, in Lemma 6 (whose proof
is given in Section 6.3) we show that in our context, the seemingly more restrictive assumption from [19]
actually follows from Assumption 3 and Assumption 2.

Lemma 6. Let A be any probabilistic, polynomial-time adversary, and let 〈D, PKA, MSKA, T 〉 be the
output resulting from the adversary playing the traceability attack game G

m
trt(1

k) with the challenger. Also let
T

.
= {t1, . . . , tm} and, for j = 1, . . . ,m, denote with δtj

the compact representation of the secret key of user
tj w.r.t. the public key PKA. If the pirate decoder D output by A contains a valid representation δ for the
public key PKA, such that δ′ is not a linear combination of δ′

t1
, . . . , δ′

tm
, then the discrete-log problem over

G is solvable.

Non-Black-Box Tracing Algorithm We present a deterministic tracing algorithm that recovers, under
Assumptions 2 and 3, the identities of the traitors that created the pirate key. Suppose that the content
of a pirate decoder is exposed. By Assumption 3, it is possible to extract from D a valid representation δ

of the current public key PKA. Define {x1, . . . , xn} to be the set of all values assigned to the users in the
system (where n denotes the total number of users in the system), and let δ1, . . . , δn be the corresponding
secret keys. Let {zi1 , . . . , ziv

} be the set of values of the revoked users specified in the current public key.7

Remember that the user-key of user j w.r.t. the current public key can be compactly represented in the form

δj
.
= 〈λ

(j)
0 A(xj), λ

(j)
0 B(xj), λ

(j)
i1
, . . . , λ

(j)
iv
〉

where λ
(j)
j , λ

(j)
i1
, . . . , λ

(j)
iv

are the Lagrange coefficients defined in Equations (3) and (4). Notice that, for any
polynomial P ∈ Z

v
q [x], it holds that

P (0) = λ
(j)
0 P (xj) + λ

(j)
i1
P (xi1) + . . .+ λ

(j)
iv
P (xiv

).

Consider the matrix A ∈ Z
n×v
q whose jth row is δ′

j , j = 1, . . . , n, i.e.:

A
.
=







λ
(1)
i1

. . . λ
(1)
iv

. . .

λ
(n)
i1

. . . λ
(n)
iv







Define the identities of the traitors to be {t1, . . . , tm} ⊆ {1, . . . , n}. By Lemma 6 and Assumption 2,
δ′ must be a linear combination of the vectors δ′

t1
, . . . , δ′

tm

obtained by projecting the traitors’ user-keys
δt1 , . . . , δtm

onto the last v components. It follows that δ′ also lies in the linear span of δ′

1
, . . . , δ′

n. More
precisely, there exists a vector ϕ of Hamming weight at most m such that

δ′ = ϕ ·A. (35)

Consider the two matrices:

B
.
=





xi1 . . . x
v
i1

. . .
xiv

. . . xv
iv



 H
.
=







−λ
(1)
0 x1 . . . −λ

1
1x

v
1

. . .

−λ
(n)
0 xn . . . −λ

(n)
0 xv

n







It is easy to verify that A ·B = H. Multiplying (35) by B, we get

ϕ ·H = δ′′

7 W.l.o.g. we are assuming that the current saturation level L is equal to v.

33



where

δ′′ .= δ′ ·B. (36)

Let C denote the linear code over Z
n
q that has H as its parity-check matrix, i.e.

c ∈ C ⇐⇒ c ·H = 0.

Let λ1, . . . , λn be the Lagrange coefficients corresponding to {x1, . . . , xn}; thus, for all P ∈ Z
<n
q [x], it holds

that

P (0) = λ1P (x1) + . . .+ λnP (xn).

In Lemma 7 (Section 6.3), we prove that C is a Generalized Reed-Solomon Code (GRS), with distance (v+1).
For more details about Generalized Reed-Solomon Codes, see e.g. [16]. Generalized Reed-Solomon Codes can
be decoded efficiently by the algorithm of Berlekamp and Welch [1]. This means that, for any e ≤ m and
any vector µ ∈ Z

n
q , there exists (at most) a unique vector ω ∈ C that disagrees with µ in at most e positions

(since C has distance (v+1) and m = b v
2c). Moreover, such unique vector ω ∈ C (if it exists) can be recovered

in deterministic polynomial-time. We now describe how this can be exploited to reconstruct ϕ given δ′.

First, we compute an arbitrary vector ϑ ∈ Z
n
q that satisfies the system of equations

ϑ ·H = δ′′. (37)

where δ′′ is defined in Equation (36). Note that such ϑ can be found by standard linear algebra since
Equation (37) induces a system of v equations with n unknowns, n > v, and H contains a non-singular
minor of size v. It is easy to verify that the vector

ω
.
= ϑ−ϕ

belongs to the linear code C; indeed,

ω ·H = ϑ ·H−ϕ ·H

= δ′′ − δ′′

= 0.

As a result, the vector ϑ can be expressed as ϑ = ω + ϕ.

Provided that the number of traitors is at most m, it holds that the Hamming weight of ϕ is less than
or equal to m and as a result ϑ is an n-vector that differs in at most m positions from the vector ω (which
belongs to C): in other words, we can view ϑ as a “partially corrupted” version of the codeword ω. Therefore,
we can recover ω from ϑ, by running the Berlekamp-Welch decoding algorithm for GRS-codes on input ϑ.
At this point, ϕ can be computed as ϕ = ϑ− ω.

By Equation (35), ϕ is a vector of Hamming weight at most m, whose non-zero components correspond
to the identities of the traitors; thus, the traitors’ identities can be recovered as

{t1, . . . , tm} = j ∈ {1, . . . , n} ∧ϕj 6= 0}.

Time-Complexity. The tracing procedure has time complexityO(n2), which can be optimized toO(n(log n)2),
if matrix operations are implemented in a more sophisticated manner, see e.g. [2]. If the number of traitors
exceeds the bound m, it is still possible to extract candidate sets of potential traitors using the Guruswami-
Sudan algorithm [13], which performs GRS-decoding “beyond the error-correction bound”. This will work
provided that the size of the traitor coalition is less than or equal to n−

√

n(n− v).

34



Correctness of Non-Black-Box Tracing Given Lemmas 6 and 7, the correctness of the non-black-box
tracing algorithm described above follows from the properties of algebraic decoding of GRS codes. Thus, to
conclude the argument, we now move on to the proofs of these Lemmas.

Proof of Lemma 6
Let g be a generator of G, and let g′

.
= gw. Using adversary A described in the attack game Gm

trt(1
k), we

want to show how to recover the value w. In performing step 1. of Gm
trt(1

k), choose two random polynomials
A0(x) and B0(x) and set the initial public key to be

〈g, g′, gA0(0)g′B
0(0), 〈`, gA0(`)g′B

0(`)〉v`=1〉.

The game then proceeds as described in Section 6.1; in particular, let t̄ be the number of New-period

operation occuring during the entire game. Eventually, adversary A outputs a pirate decoder D from which
(by Assumption 3) it is possible to extract a vector

δ = 〈γa, γb, γ1, . . . , γv〉,

which is a valid representation of the final public key PKA. In formula,

y = gγag′γb

v
∏

`=1

hγ`

` (38)

where

PKA
.
= 〈g, g′, y, 〈xi`

, h`〉
v
`=1〉.

Considering discrete logarithms to the base g of Equation (38), we get:

At̄(0) + wB t̄(0)=γa +

v
∑

`=1

At̄(xi`
)γ` + w

(

γb +

v
∑

`=1

B t̄(xi`
)γ`

)

that can be rewritten as:

w
(

γb +

v
∑

`=1

B t̄(xi`
)γ` −B

t̄(0)
)

=At̄(0)− γa −
v
∑

`=1

At̄(xi`
)γ` (39)

Notice that both the right-hand side and the coefficient of w in (39) are known, so that if such coefficient
is non-zero (or, equivalently, if the right-hand side of (39) is non-zero), then we can successfully recover
the value of w, thus violating Assumption 2. To complete the argument, it then suffices to show that the
right-hand side of (39) is zero only with negligible probability, or equivalently that:

Pr[γa = γ̄a] = 1/q (40)

where

γ̄a
.
= At̄(0)−

v
∑

`=1

At̄(xi`
).

To this aim, below we prove that, conditioning on all the other information in A’s view, the quantity γ̄a is
uniformly distributed in Zq. It will follow that A’s chances of outputting a value γa equal to γ̄a are just 1 in
q, proving Equation (39) and thus the Lemma.

To prove that γ̄a is distributed uniformly in Zq, we again make use of Lemma 1 following the same
approach described in Section 5.2.

Consider the quantity

V
.
= (Coins, w, {{ctj , r

t
j}

2v+2
j=1 }

t̄
t=1)

35



where Coins represents the coin tosses of A, w
.
= logg g

′, and {{ctj , r
t
j}

2v+2
j=1 }

t̄
t=1 represents all the randomness

used in the t̄ New-period operations that took place during the Gm
trt(1

k) attack game.
The remaining randomness used during the attack game consists of the 2v+ 2 coefficients of the polyno-

mials A0(·), B0(·) and can be represented by a vector α uniformly distributed in Z
(2v+2)×1
q :

α
.
= (a0, a1, . . . , av, b0, b1, . . . , bv)T .

Consider the vector β ∈ Z
(v+m+2)×1
q defined as:

β
.
= (X0,X1, . . . ,Xv,A1, . . . ,Am, γ̄a)T

where X0
.
= A0(0) + wB0(0), X`

.
= A0(`) + wB0(`), for ` = 1. . . . , v and Aj

.
= A0(tj) for j = 1, . . . ,m.

It is clear by inspection that all the information in the view of the adversary A during the attack game
Gm

trt(1
k) is completely determined by V and β. In particular, the initial public key PK0 is fixed by β and

w, and the secret keys of the traitors are determined by the choice of β, Coins and w.
The quantities in V , β and α are related according to the following matrix equation:

β = M ·α + γ

where γ ∈ Z
(v+m+2)×1
q is the vector

γ
.
=





























0
0
...
0
0
...
0

D0,t̄(0)−
∑v

`=1D
0,t̄(xi`

)γ`





























and M ∈ Z
(v+m+2)×(2v+2)
q is the matrix





























1 0 . . . 0 w 0 . . . 0
1 1 . . . 1 w w . . . w

...
...

1 v . . . vv w wv . . . wvv

1 xt1 . . . xv
t1

0 0 . . . 0
...

...
1 xtm

. . . xv
tm

0 0 . . . 0
1−
∑v

`=1γ` −
∑v

`=1γ`xi`
. . . −

∑v
`=1γ`x

v
i`

0 0 . . . 0





























By inspection, it is possible to see that the first v +m+ 1 rows of M are linearly independent, provided
that w 6= 0. To see that the rank of M is indeed v +m+ 2, define T ∈ Z

m×v
q to be the minor of matrix A

resulting from considering only rows t1, . . . , tm:

T
.
=







λ
(t1)
i1

. . . λ
(t1)
iv

. . .

λ
(tm)
i1

. . . λ
(tm)
iv







It is possible to show that if the last row of M were in the linear span of the first v +m + 1 rows of M, it
would follow that δ′ should belong to the linear span of the rows of T. But since, by hypothesis, δ ′ is not a
linear combination of δ′

t1
, . . ., δ′

tm
, the matrix M must have full rank.

36



As soon as we fix V , the first v+m+ 1 entries of γ and the first v+ 1 rows of M are determined, but α

is still distributed uniformly and independently at random in Z
(2v+2)×1
q . Similarly to the proof of Lemma 3,

it is also possible to show that fixing the first v + j + 1 entries of β determines the (v + j + 2)th row of M,
for j = 1, . . . ,m; and that moreover, fixing the first v +m+ 1 entries of β also determines the last rows of
γ and of M.

Hence, by Lemma 1, we can conclude that the conditional distribution of γ̄a w.r.t. V , and to the first
v +m+ 1 entries of β, is uniform over Zq. In other words, conditioning on all the other information in A’s
view, the quantity γ̄a is uniformly distributed over Zq. Equation (39), and thus the Lemma, follows. ut

Lemma 7. Consider the Generalized Reed-Solomon code:

C′
.
=
{

〈−
λ1

λ
(1)
0

P (x1), . . . ,−
λn

λ
(n)
0

P (xn)〉 | P ∈ Z
<n−v
q [x]}.

It holds that

1. C = C′.

2. C is a linear code with message-rate (n− v)/n and distance v + 1.

Proof.
1. We only need to show that C ′ ⊆ C. Indeed, assuming that C ′ is a linear sub-space of C, since dim(C) =
n− v = dim(C′), it immediately follows that C = C ′.

To prove that C′ ⊆ C, notice that if 〈c1, . . . , cn〉 ∈ C
′, then it is of the form

〈

−
λ1

λ
(1)
0

P (x1), . . . ,−
λn

λ
(n)
0

P (xn)
〉

for some polynomial P ∈ Z
<n−v
q [x]. We now verify that 〈c1, . . . , cn〉 belongs to C. First, notice that for

` = 1, . . . , v, multiplying 〈c1, . . . , cn〉 by the `th column of H we get

〈c1, . . . , cn〉 · 〈−λ
(1)
0 x`

1, . . . ,−λ
(n)
0 x`

n〉 =
n
∑

i=1

λiP (xi)x
`
i .

Now observe that
n
∑

i=1

λiP (xi)x
`
i = 0

by the choice of λ1, . . . , λn and the facts that degree(P ) < n − v and ` ≤ v (just consider the polynomial
Q(x)

.
= P (x)x` ∈ Z

<n
q [x]). It follows that

〈c1, . . . , cn〉 ·H = 0.

2. Observe that a vector of Z
n−v
q can be encoded as the coefficients of a polynomial P ∈ Z

<n−v
q [x]. The

corresponding codeword of C will be the vector

〈

−
λ1

λ
(1)
0

P (x1), . . . ,−
λn

λ
(n)
0

P (xn)
〉

.

To see that the distance of the linear code is v+1 observe that any two different codewords of C can agree on
at most n− v− 1 positions, or equivalently any two distinct codewords differ on at least v+ 1 positions. ut

37



7 Conclusions and Future Work

We introduce the first public-key traitor tracing scheme where an unlimited number of users can be effi-
ciently added and removed from the system. Our scheme enjoys both client-side scalability, by supporting
a dynamically-changing user population, and server-side scalability, as it enables many content providers to
use a common content distribution infrastructure.

We present a formal model for scalable public-key traitor tracing, and a thorough analysis of the revoca-
tion and tracing properties of our scheme against adaptive adversaries.

At a technical level, our adversarial model improves over previous modeling for public-key traitor tracing
by capturing a larger class of adversaries, endowed with greater control over system, than what previ-
ously considered in the related literature. In particular, in our model the adversary can control an a priori
unbounded number of user additions and removals. The main limitation of our formal model is that the
adversary is supposed to be fully revoked in a “window” of the system.

An interesting open problem left open by our research consists of extending our results to a more general
adversarial model, in which the adversary is not supposed to obey the “window” constrain.

Acknowledgments

We are grateful to Antonio Nicolosi for his constructive criticism and encouraging support throughout this
research.

We thank the anonymous referees for helping in improving the readability of the paper, and one of them
in particular for pointing out a flaw in an early version of our scheme.

References

1. E.R. Berlekamp and L. R. Welch. Error Correction of Algebraic Block Codes, 1986. U.S. Patent, Number
4,633,470.

2. D. Bini and V. Y. Pan. Polynomial and Matrix Computations (vol. 1): Fundamental Algorithms. Birkhauser-
Verlag, 1994.

3. D. Boneh and M. Franklin. An Efficient Public Key Traitor Tracing Scheme. In Advances in
Cryptology—Crypto ’99, pages 338–353. Springer-Verlag, 1999. LNCS 1666. Full version available at
crypto.stanford.edu/˜dabo/pubs.html.

4. S. Brands. Rethinking Public Key Infrastructures and Digital Certificates—Building in Privacy. PhD thesis,
Technical University of Eindhoven, 1999.

5. R. Canetti, J. Garay, G. Itkis, D. Micciancio, M. Naor, and B. Pinkas. Multicast Security: A Taxonomy and
some Efficient Constructions. In Proceedings of IEEE INFOCOM ’99, volume 2, pages 708–716, 1999.

6. B. Chor, A. Fiat, and N. Naor. Tracing Traitors. In Advances in Cryptology—Crypto ’94, pages 257–270.
Springer-Verlag, 1994. LNCS 839.

7. R. Cramer and V. Shoup. Design and Analysis of Practical Public-Key Encryption Scheme Secure against
Adaptive Chosen Ciphertext Attack. SIAM Journal on Computing, 33(1):167–226, 2003.

8. Y. Dodis and N. Fazio. Public-Key Broadcast Encryption for Statless Receivers. In Digital Rights Management—
DRM ’02, pages 61–80. Springer, 2002. LNCS 2696.

9. Y. Dodis and N. Fazio. Public-Key Trace and Revoke Scheme Secure against Adaptive Chosen Ciphertext Attack.
In Public Key Cryptography—PKC ’03, pages 100–115. Springer-Verlag, 2003. LNCS 2567.

10. A. Fiat and M. Naor. Broadcast Encryption. In Advances in Cryptology—Crypto ’93, pages 480–491. Springer-
Verlag, 1993. LNCS 773.

11. E. Gafni, J. Staddon, and Y. L. Yin. Efficient Methods for Integrating Traceability and Broadcast Encryption.
In Advances in Cryptology—Crypto ’99, pages 372–387. Springer-Verlag, 1999. LNCS 1666.

12. A Garay, J. Staddon, and A. Wool. Long-Lived Broadcast Encryption. In Advances in Cryptology—Crypto 2000,
pages 333–352. Springer-Verlag, 2000. LNCS 1880.

13. V. Guruswami and M. Sudan. Improved Decoding of Reed-Solomon and Algebraic-Geometric Codes. In IEEE
Symposium on Foundations of Computer Science, pages 28–39, 1998.

38



14. A. Kiayias and M. Yung. Self Protecting Pirates and Black-Box Traitor Tracing. In Advances in Cryptology—
Crypto ’01, pages 63–79. Springer-Verlag, 2001. LNCS 2139.

15. K. Kurosawa and Y. Desmedt. Optimum Traitor Tracing and new Direction for Asymmetricity. In Advances in
Cryptology—EuroCrypt ’98, pages 145–157. Springer-Verlag, 1998. LNCS 1403.

16. F. J. MacWilliams and N. Sloane. The Theory of Error Correcting Codes. North Holland, Amsterdam, 1977.
17. D. Naor, M. Naor, and J. Lotspiech. Revocation and Tracing Schemes for Stateless Receivers. In Advances in

Cryptology—Crypto ’01, pages 41–62. Springer-Verlag, 2001. LNCS 2139.
18. M. Naor and B. Pinkas. Threshold Traitor Tracing. In Advances in Cryptology—Crypto ’98, pages 502–517.

Springer-Verlag, 1998. LNCS 1462.
19. M. Naor and B. Pinkas. Efficient Trace and Revoke Schemes. In Financial Cryptography—FC 2000, pages 1–20.

Springer-Verlag, 2000. LNCS 1962. Full version available at www.wisdom.weizmann.ac.il/˜naor/onpub.html.
20. D. R. Stinson and R. Wei. Combinatorial Properties and Constructions of Traceability Schemes and Frameproof

Codes. SIAM Journal on Discrete Mathematics, 11(1):41–53, 1998.
21. W.G. Tzeng and Z.J. Tzeng. A Public-Key Traitor Tracing Scheme with Revocation Using Dynamics Shares.

In Public Key Cryptography—PKC ’01, pages 207–224. Springer-Verlag, 2001. LNCS 1992.
22. D. Wallner, E. Harder, and R. Agee. Key Management for Multicast: Issues and Architectures. Available at

ftp://ftp.ietf.org/rfc/rfc2627.txt, 1997.

39


