On security of XTR public key cryptosystems
against Side Channel Attacks *

Lxx* and Kouichi Sakurai?

Dong-Guk Han'**, Jongin Lim
! Center for Information and Security Technologies(CIST),
Korea University, Seoul, KOREA
{christa,jilim}@korea.ac.kr
2 Department of Computer Science and Communication Engineering 6-10-1,
Hakozaki, Higashi-ku, Fukuoka, 812-8581, Japan,
sakurai@csce.kyushu-u.ac. jp

Abstract. The XTR public key system was introduced at Crypto 2000.
Application of XTR in cryptographic protocols leads to substantial sav-
ings both in communication and computational overhead without com-
promising security. It is regarded that XTR is suitable for a variety of
environments, including low-end smart cards, and XTR is the excellent
alternative to either RSA or ECC. In [LV00a,SLO01], authors remarked
that XTR single exponentiation (XTR-SE) is less susceptible than usual
exponentiation routines to environmental attacks such as timing attacks
and Differential Power Analysis (DPA). In this paper, however, we in-
vestigate the security of side channel attack (SCA) on XTR. This paper
shows that XTR-SE is immune against simple power analysis (SPA) un-
der assumption that the order of the computation of XTR-SE is carefully
considered. However we show that XTR-SE is vulnerable to Data-bit
DPA (DDPA)[Cor99], Address-bit DPA (ADPA)[IIT02], and doubling
attack [FV03]. Moreover, we propose two countermeasures that prevent
from DDPA and a countermeasure against ADPA. One of the counter-
measures using randomization of the base element proposed to defeat
DDPA, i.e., randomization of the base element using field isomorphism,
could be used to break doubling attack. Thus if we only deal with SPA,
DDPA, ADPA, and doubling attack as the attack algorithm for XTR-SE,
XTR-SE should be added following countermeasures: randomization of
the base element using field isomorphism (DDPA and doubling attack)
+ randomized addressing (ADPA). But the proposed countermeasure
against doubling attack is very inefficient. So to maintain the advantage
of efficiency of XTR a good countermeasure against doubling attack is
actually necessary.

Keywords: XTR Public Key Cryptosystem, Side Channel Attacks, SPA,
Data-bit DPA, Address-bit DPA, doubling attack

* This is a “full” version of a paper that will been published in ACISP04.
** This work was done while the first author visits in Kyushu Univ. and was supported
by the Korea Science and Engineering Foundation (KOSEF). (M07-2003-000-20123-
0)
*** This work was supported by the Ministry of Information & Communications, Korea,
under the Information Technology Research Center (ITRC) Support Program.

1 Introduction

In Crypto 2000 Lenstra and Verheul proposed XTR public key system [LV00a].
It is a novel method that makes use of traces to represent and calculate powers
of elements of a subgroup of a finite field. XTR uses the trace over GF(p?) to
represent elements of the order p? —p+1 subgroup of GF(p®)*, thereby achieving
a factor 3 size reduction compared to the traditional representation. The security
of XTR relies on the difficulty of solving discrete logarithm related problems in
the multiplicative group of a finite field.

In general, it is well known that ECC is suitable for a variety of environments,
including low-end smart cards and over-burdened web servers communicating
with powerful PC clients. But XTR has some advantages such as its very faster
parameter and key selection (much faster than RSA, orders of magnitude faster
than ECC), small key sizes (much smaller than RSA, comparable with ECC for
current security settings), and speed (overall comparable with ECC for current
security settings). Combined with its very easy programmability, this makes
XTR an excellent public key system for a very wide variety of environments,
ranging from smart cards to web serves.

XTR single exponentiation (XTR-SE) [LV00a,SL01] has a rather unusual
property that the two computations involved (i.e., if m; = 0 and m; = 1) are
very similar and take the same number of instructions. Thus, the instructions
carried out in XTR-SE for the two different cases are very much alike. So, authors
remarked that XTR-SE is less susceptible than usual exponentiation routines to
environmental attacks such as timing attacks and Differential Power Analysis
(DPA).

In this paper, we investigate the security of side channel attack (SCA) on
XTR. Especially, we consider following four SCA : simple power analysis (SPA),
data-bit differential power analysis (DDPA) proposed by Coron [Cor99], address-
bit differential power analysis (ADPA) proposed by Itoh et al. [IIT02], and dou-
bling attack proposed by Fouque et al. [FV03].

This paper shows that XTR-SE is immune against simple power analysis
(SPA) under assumption that the order of the computation of XTR-SE is care-
fully considered. As the instructions performed during XTR-SE does not depend
on the secret value being processed the order of computation is flexible. For ex-
ample, if XTR-SE is implemented as following order XTRDBL, XTRDBL, and
then XTR_Coy,—1 if m; =0, and XTR_Co,11, XTRDBL, and then XTRDBL
if m; = 1, then the order of the computation can be easily known to an attacker
by SPA. Thus if the order of computation of XTR-SE is not considered XTR-SE
could not be any more secure against SPA.

XTR-SE is secure against SPA without any countermeasure if the order of the
computation is carefully considered, but we will show that XTR-SE is vulnerable
to DDPA, ADPA, and doubling attack.

Moreover, we propose several countermeasures against the proposed attacks.
First, we introduce two countermeasures against DDPA as follows: randomiza-
tion of the base element using field isomorphism and randomization of the private
exponent. Also, we propose a countermeasure against ADPA by using random

number. In the case of doubling attack randomization of the base element using
field isomorphism which is proposed to defeat DDPA could be used to break
doubling attack. Note that the randomization of the private exponent method
is not secure against doubling attack [FV03].

Thus if we only deal with SPA, DDPA, ADPA, and doubling attack as the
attack algorithm for XTR-SE, XTR-SE should be added following countermea-
sures: randomization of the base element using field isomorphism (DDPA and
doubling attack) + randomized addressing (ADPA).

However, as the proposed countermeasure against doubling attack that is
randomization of the base element using field isomorphism is very inefficient,
for instance, the cost of XTR-SE with this countermeasure is about 129 times
slower than that of XTR-SE without it, the efficiency of XTR-SE with SCA
countermeasures could not be comparable with that of ECC or RSA with SCA
countermeasures. To maintain the advantage of efficiency of XTR a good coun-
termeasure against doubling attack is actually necessary. Construction of efficient
countermeasures against doubling attack is an open question.

Note that we hope this first step towards side channel attack on XTR, public key
cryptosystems will be a motivating starting point for further research.

2 XTR public key system

2.1 Preliminaries

In this section we review some of the results from [LV00a,SLO1].
For constructing XTR, primes p and ¢ must satisfy following conditions :

— p is prime such that p (mod 3) is a primitive element in Zs.
— &g(p) has a prime factor ¢ of which the size is more than 160 bits.

Note that @¢(X) is 6 — th cyclotomic polynomial. The first above condition
guarantees GF(p?) has an optimal normal basis of type I [[M93], Theorem 5.2].
And the subgroup with order ¢ cannot be embedded in the multiplicative group
of any true subfield of GF(p®) by the second condition [[L97], Lemma 2.4].

Let g be a generator of the order ¢ subgroup of GF(p%)*.

Definition 1. The trace Tr(h) over GF(p?) of h € GF(p®) is the sum of the
conjugates over GF(p?) of h, i.e.,

Tr(h) = h+ h?" + h?".

In XTR elements of < g > are represented by their trace over GF (p?). It was
shown that actual representation of the elements of < g > and other elements of
GF(p®) can be avoided. Thus, there is no need to represent elements of GF(p®),
however, representation of GF(p?) is needed. That is to say XTR uses GF(p?)
arithmetic to achieve GF (p%) security, without requiring explicit construction of
GF(p°).

XTR has two main advantages compared to ordinary representation of ele-
ments of < g >:

— It is shorter, since Tr(h) € GF(p?), whereas representing an element of
< g > requires in general an element of GF(p%), i.e., three times more bits.

— Tt allows faster arithmetic, because given Tr(g) and n the value Tr(g™) can
be computed substantially faster than g" can be computed given g and n.

Throughout this paper, ¢, denotes Tr(g") € GF(p?), for some fixed p and g
of order ¢, where ¢ divides $g(p). Note that in [LV00a,LV00b,LV01] it is shown
how p, g, and ¢; can be found quickly.

Lemma 1 ([SLO1]). Let z,y,z € GF(p*) with p =2 mod 3.

1. Computing zP is free.

ii. Computing x2 takes two multiplications in GF(p).
iti. Compuling xy costs the same as two a half multiplications in GF(p).
iv. Computing xz — yzP costs the same as three multiplications in GF(p).

Efficient computation of ¢, given p,q and c; is based on the following facts.
Corollary 1 ([LV00a,SLO1]). Let ¢,cp—1,¢n and cpy1 be given.

. c=cCq.

. Cp =cCpp =Ch forn e Z.
iii. ¢, € GF(p?) forn € Z.

. Ccop = 2 — 2cF takes two multiplications in GF(p).

V. Cpgo = C* Cpy1 — P % ¢y + ¢p—1 takes three multiplications in GF (p).
Vi. Cop—1 = Cn—1 % Cn — P x b 4 ¢ | takes three multiplications in GF(p).
Vil. Copt1 = Cp * Cpp1 — kB + b | takes three multiplications in GF (p).

Let S, = (Cn—1,CnsCntr1) € GF(p?)3; thus S; = (3,¢1,¢3 — 2¢}). The triple
Son—1 = (Ca(n-1)» C2n—1, C2n) can be computed from S,, and ¢, by applying Corol-
lary 1 v twice to compute cy(,—1) and ca,, based on c(,—1y and c¢,, respectively,
and by applying Corollary 1 vi to compute ca,—1 based on S,, = (¢n—1,Cn, Cnt1)
and ¢;. This takes seven multiplications in GF(p). The triple Sa,+1 can be com-
puted in a similar manner from S, and c; at the cost of seven multiplications
in GF(p) using Corollary 1 vii.

2.2 XTR Single Exponentiation

In XTR, the algorithm to compute Tr(g"™) given Tr(g) and n € Z is needed like
the algorithm to compute g™ in public key system based on discrete logarithm
problem. We call this algorithm as XTR single exponentiation (XTR-SE). XTR-
SE is as follows.

XTR Single Exponentiation (cf.[LV00a], Algorithm 2.3.7)

Input : c and n

Output : S, = (¢p—1,¢n; Cnt1)

- If n < 0, apply this algorithm to —n and ¢, and apply Corollary 1 ii to the
resulting value.
- If n =0, then Sy = (¢, 3,¢) (cf. Corollary 1 ii).
-If n =1, then S; = (3,¢,c? — 2¢P) (cf. Corollary 1 iv).
- If n =2, use Corollary 1 v and S7 to compute cs and thereby So.
- Otherwise, to compute S,, for n > 2 define S; = Sp;;1 and let m = n. If m is
even, then replace 7 by m — 1. Let @ = 2m + 1, k = 1, and compute S}, = S
using Corollary 1 v and Ss.
Let m = Y\ _om;27 with m; € {0,1} and m; = 1. For j =1 —1,1—2,...,0 in
succession do the following:
— If m; = 0 then use
Sk = (Cak, Coky1, C2n42) to compute Sop = (Cak, Cakt1, Cak+2)-
(using Corollary 1 v for cs and cqx42 and Corollary 1 vi for cqpy1)
— If m; =1 then use
Sk = (Cars Coky1, Cany2) to compute Sopi1 = (Cant2, Cakt3; Cakya)-
— Replace k£ by 2k + m;.
After this iteration k = m and Sm = S,,. If n is even use

Siw = (Cm—1, Cm, Cm+1) to compute Smi1 = (G, Gt 1, Cmt2)

(using Corollary 1 v) and replace 7 by m + 1. As a result S,, = Sm.

Theorem 1 ([SLO1], cf. Section 2.4). Given the representation Tr(g) €
GF(p?), the representation Tr(g") € GF(p?) can be computed in 71og, n multi-
plications in GF(p), for any integer n.

In above algorithm, the trace ¢; of g in S1 = (cg, ¢1,¢2) can be replaced by
the trace c¢; of the t—th power g* of g: with ¢; = ¢, §1 = (Co,C1,C2) = (3, ¢ty Cat),
and by the above theorem, the triple §v = (Cv—1,Cu, Cot1) = (Clu—1)t> Cots Cv41)t)
can be computed in 7log, v multiplications in GF(p), for any integer v < q.

The only difference between the two different cases in XTR-SE is the appli-
cation of Corollary 1 vi if m; = 0 and of Corollary 1 vi¢ if m; = 1. But, the
two computations involved are very similar and take the same number of in-
structions. Thus in [[LV00a], Remark 2.3.9] they claimed that XTR-SE is much
less susceptible than exponentiation routines to environmental attacks such as
timing attacks and Differential Power Analysis.

Notation : Define following three functions:

XTRDBL(cy) := can,
XTR Cpyo(Cn-1,¢n,Cni1,C) := Cpyo,
XTR Cop—1(Cn—1,Cn, Cnt1,C) := Con—1,
XTR Cony1(Cn-1,Cn;sCnt1,C) := Cont1

Note that XTRDBL, XTR Cy 42, XTR_Coy,—1, and XTR_Co,4+1 are de-
fined by Corollary 1 iv, v, vi, and vii, respectively.

When n > 2, above XTR-SE could be simplified as following Table 1.

Table 1. XTR Single Exponentiation Algorithm (XTR-SE).

INPUT : ¢ and n where n > 2
OUTPUT : Sn = (Cn_l,Cn,Cn+1)
1. Compute initial values:
1.1. C[3] < ¢, C[0] — XTRDBL(C]3]),
C[1] « XTR_C2n+1(3,C[3], C[0], C[3]),
and C[2] — XTRDBL(C[0]).
1.2. If n is even, n replace n — 1.
Let n=2m+1 and m = 23:0 m;27 with m; € {0,1} and m; = 1.
2. for j =1 —1 downto 0
2.1. T[1] « XTRDBL(C[m;])
2.2. T[2] « XTRDBL(C[1 4+ mj])
2.3. if (my; = 0) then
T[3] «+— XTR_C2,-1(C[0],C[1],C[2], C[3])
if (m; = 1) then
T3] «— XTR_C2.+1(C[0],C[1],C[2], C[3])
2.4. C[0] — T[1]
2.5. C[1] « T3]
2.6. C[2] — T|2]
3. If n is odd then
return (C[0], C[1], C[2]),
else C[0] «— XTR_C,+2(C[0],C[1],C[2], C[3])
return (C[1], C[2], C[0]).

2.3 Toy example

Let n = 181. Then m = 90 = 264+2%+23 42 i.e, (mg, ms, m4, m3, ma, my, mg) =
(1,0,1,1,0,1,0). Given ¢ and n, Sig; could be computed as following Table 2.

3 Side Channel Attacks on XTR-SE

In 1998, Kocher described in a technical draft [KJJ98] Simple Power Analysis
(SPA) and Differential Power Analysis (DPA) on DES. SPA only uses a single
observed information, while DPA uses a lot of observed information together
with statistic tools.

Table 2. Compute Sis1 given c.

L J [m | kx | (C0L.CALCI2) |

6 1 1 (c2,c3,c4)

5 0 2 (ca,c5,c6)

4 1 5 (01070117012)

3 1 11 (622, C23, 624)

2 0 22 (cau, ca5, ca6)

1 1 45 (Cgo, Co1, 092)

0 0 90 (c1s0, c181, C182)

In 1999, Messerges et al. proposed a new powerful attack against the secret
key cryptosystems, the address-bit DPA (ADPA), which analyzes a correlation
between the secret information and addresses of registers [MDS99]. To distin-
guish from ADPA, we call general DPA as Data-bit DPA (DDPA).

In 2003, Fouque et al. proposed doubling attack against a classical imple-
mentation of the modular exponentiation or scalar multiplication in the ECC
that only requires two queries to the device [FV03].

In this section, we investigate the security of side channel attack on XTR,
especially SPA, DDPA, ADPA, and doubling attack are considered.

3.1 XTR-SE is secure against SPA

The computation of the XTR-SE requires the computations repeatedly
that (XTRDBL, XTRDBL, XTR Cs,—1) or (XTRDBL, XTRDBL,
XTR_-Cspy1) from (C[0],C[1],C[2],C[3]) depending on the value of each bit m;.
As XTR_Cs,—1 and XTR_Cs, 11 require same multiplications in GF(p), these
two operations are indistinguishable from the observation of the power con-
sumption. This means that the instructions performed during XTR-SE does not
depend on the secret value being processed. Thus XTR-SE is resistant against
SPA.

Caution : Since XTRDBLs and XTR_Cy,_1 (or XTR_C5,+1) are indepen-
dent, the order of computation is flexible. But the order of the computation is
very important. For instance, assume that XTR-SE is implemented as following
order XTRDBL, XTRDBL, and then XTR_Csy,_1 if m; = 0,and XTR_Coy 41,
XTRDBL, and then XTRDBL if mj = 1. Then, the order of the computation
can be easily known to an attacker by SPA.

Thus, if the order of the computation of XTR-SE is not considered XTR-SE
could not be any more secure against SPA.

Remark 1. Similar results could be found in the computation of the scalar mul-
tiplication on the Montgomery-form elliptic curves [OS00].

Remark 2. In step 3 in XTR-SE, a dummy XT R_C,, 2 operation is needed when
n is odd. Otherwise the least significant bit of n, i.e., n is even or not, could be
revealed.

3.2 Data-bit DPA against XTR-SE

In this section we describe a DDPA [Cor99] against an implementation of XTR-
SE. DDPA on XTR-SE can be performed by noticing that at step j the processed
T[1] depends only on the first bits (my, ..., m;) of m. Now assume that we know
how field elements are represented in memory 7T'[¢] (or C[i]) during computation
and select a particular bit of this representation. When CTi] is processed to
update T'[1], power consumption will be correlated to this specific bit of C[i]. No
correlation will be observed with an element C[¢] not computed inside the card
. To update T'[1] in XTR-SE C[0] is used when m; = 0 and C[1] is used when
m; = 1

Thus it is possible to successively recover the bits of the exponent by guessing
which C[i] are computed by the card.

For example, the second most significant bit m;_; of m can be recovered
by computing the correlation between power consumption and any specific bit
of the binary representation of c4. If m;_1 = 0, ¢4 is computed in XTR-SE to
update T[1], and power consumption is thus correlated with any specific bit
of ¢4. Otherwise if m;_; = 1, ¢4 is never computed to update T'[1], and no
correlation will be observed with c¢4. This gives m;_1. The following bits of m
can be recursively recovered in the same way.

3.3 Address-bit DPA against XTR-SE

The address-bit DPA was originally investigated by Messerges, Dabbish and
Sloan [MDS99] and Itoh et al. extended the analysis to elliptic curve based
cryptosystems [IIT02].

This paper extends the analysis to XTR-SE. Since XTR-SE has similar struc-
ture to the Montgomery form elliptic curves, the analysis technic proposed by
Itoh et al. could be applicable to XTR-SE.

ADPA [IIT02] is successful if there is a close dependence between a secret
value and addresses of accessed registers. Thus if we could find correlations
between address value and secret value then XTR-SE is also vulnerable to ADPA.

Following property shows that there are correlations between address value
and secret value m; in XTR-SE.

Property 1. In substep 2.1 and 2.2 in XTR-SE,

— When m; =0
e To update T'[1] read address C]0].
e To update T[2] read address C[1].
— When m; =1
e To update T'[1] read address C[1].
o To update T[2] read address C[2].

From Property 1, ADPA [IIT02] can be applied to XTR-SE. Thus XTR-SE is
not any more secure against ADPA.

3.4 Doubling Attack against XTR-SE

In CHES 2003, Fouque et al. proposed the new attack against a classical imple-
mentation of the modular exponentiation or scalar multiplication in the ECC
that only requires two queries to the device [FV03]. Their attack only works for

the Left-to-Right implementation.

The main idea of the doubling attack is based on the fact that, even if an
attacker could not know which computation is done by the device, he/she could
at least detect when the device does twice the same operation. Namely, if the
device computes 2 - X and 2-Y, the attacker could not guess the value of X or

Y but he/she could check if X =Y.

First, consider an example. This example is the same as example described in
section 2.3. Then we compare the sequence of operations when XTR-SE is used
to compute Sigo = (c180,C181,C182) given ¢; and Sigo = (c180.2,C181.2, C182-2)
given ¢; = co. Note that these notations are described in section 2.2.

Table 3. Compute S1s1 and §180 given c¢; and ¢; = cg, respectively.

Compute S1s1 given c1 Compute S1s1 given ¢; = c2
i | my k (C[o], 1], C2]) (Clo], 1], C2))
6 1 1 (c2,c3,c4) (c2 c4) = (|62 2| C3.2,C4.2)
5 0 2 (|C4|,C5,Cs) (C) (64 2,C5.2,C6. 2)
4 1 5 (c10, €11, C12) (a1 0,611, 12) = (€102, €11.2, C12:2)
3 1 11 (c22, c23, C24) (c2 2,623, 4) (|C22-2|, €23.2,C24.2)
2 0 22 (|C44|, Ca5,C46) (Caa, Cas, cas) = (Caa-2, Ca5.2, Ca6.2)
1 1 45 (co0, co1, Co2) (co0, o1, Co2) = (|090-2|, Co1.2,C92.2)
0 0 90 (|CISO|7 C181, C182) (c1s0, C181, c182) = (c180.2, C181.2, C182-2)

From the table 3, we can see that XT RDBL operation at j = 5,2, and 0 to
update C[0] in the computation Sig; is the same as the XT RDBL operation at
6,3, and 1 to update C[0] in the computation S;g;, respectively.

In XTR-SE, we can easily derive the following property.

Property 2. C|0] is updated as cog.1 (or cax.) in S, (or S, when ¢ = cy). If
m; = 0 then k; = 2 - k;_1, where k; denotes the value of & when index j = 1.
Thus if v = 2 and m; = 0 then cox,.1 = cok,_,.2. L m; =1 then k; =2-k;—; + 1.
Thus if v = 2 and m; = 1 then cax,.1 7# cox,_, .2

From the above property, XTRDBL operation at rank j to update C[0] in
the computation S, is the same as the XTRDBL operation at rank j + 1 to
update C[0] in the computation S,, (when ¢; = ¢,) if and only if m; = 0.

Therefore, with only two requests to the device, it is possible to recover all

the bits of the secret value.

Remark 3. The doubling attack defeats two of the three countermeasures pro-
posed by Coron [Cor99], which are randomization of the private exponent and
randomization of the base element.

4 Countermeasures against the Proposed Attacks

4.1 Countermeasures against Data-bit DPA

Many countermeasures against side channel attacks have been proposed. Okeya
et al. classified them into several types such as fixed procedure type, random-
ized addition chains type, indistinguishable operations type, data randomization
type, and so on [OT03]. Especially, to resist against DDPA randomized exponent
methods contained in randomized addition chains type and the data randomiza-
tion type are used.

Randomization of the Base Element Using Field Isomorphism To ran-
domize computing objects, we use field isomorphism. As p = 2 mod 3, the zeros
a and o® of the polynomial (X3 —1)/(X —1) = X2 + X + 1 form an optimal
normal basis for GF (p?) over GF(p). An element x € GF(p?) is represented as
T1a+7902 With 11, 29 € GF(p). Namely, x € GF(p)[X]/(X2+ X +1) = GF(p?).

As we know, there is one and only one finite field GF(p?) up to isomorphism.
So, if we find another quadratic monic irreducible polynomial X2 + a1.X + ag
over GF(p) then we can construct GF(p)[X]/(X? + a1 X + ag) isomorphic to
GF(p?). Thus we obtain another representation for the element x using the roots
Of X2 —+ alX + ag.

The field isomorphism method is described as follows:

— Goal : Compute S,, from given ¢ and n.
Note that c is represented as the element of GF(p)[X]/(X? + X + 1).

— Step 1 : Choose randomly a quadratic monic irreducible polynomial X2 +
a1 X + ag over GF(p).
Let ¢ denote an isomorphism from GF(p)[X]/(X? + X + 1) to
GF(p)[X)/(X? + a1X +a).

— Step 2 : Represent ¢ as an element ¢(c) € GF(p)[X]/(X? + a1 X + ag). Let
¢ = ¢(c). Note that in this case basis conversion is needed.

— Step 3 : Compute S;, :=XTR-SE(c',n) = (¢;,_1, ¢, ¢q1)-

— Step 4 : Go back to the original representation by representing S/ as an
element

Sn = (671 (ch 1), 07 (ch), 07 (enga)) € (GF(P)[X]/(X? + X +1))°.

Efficiency of the countermeasure : The efficiency of the countermeasure
depends on the choice of the irreducible polynomial X2 + ;X + a¢ and basis.
To speed up XTR-SE 22, 2y, 2P, vz — y2P for x,y,z € GF(p?) should be efficient
because these operations play an important role in XTR-SE. Table 4 shows the

10

efficiency of basic operations in XTR and \S,, for XTR [SLO01] using optimal nor-
mal basis type I and XTR using random quadratic monic irreducible polynomial
with polynomial basis. Note that the numbers in Table 4 denote the required
number of multiplications in GF'(p).

Table 4. The costs of the basic operations in XTR.

| || z? | z2 | Ty | rz — yzP | Basis | Cost of S,
XTR [SLO1] free 2 2.5 3 Optimal normal 7logy n

basis type I
XTR 1.3log, p| 4.6 6 [12+1.3log, p| Polynomial basis [(21.2 + 5.21log, p) - log, n

Remark 4. In step 2 and 4, basis conversions are needed. In general, the cost of
basis conversion is not negligible because square root calculation is required in
the case of XTR. For instance, in step 2, to represent ¢ € GF (p)[X]/(X?+ X +1)
with normal basis as an element of GF(p)[X]/(X?+ a1 X + ag) with polynomial
basis a root of X2+ X + 1 should be represented with respect to normal basis of
GF(p)[X]/(X?+ a1 X + ag). At that case, square root calculation is required. If
two field bases which are changed between themselves are fixed and a root of X 2+
X +1 is represented with respect to basis of GF(p)[X]/(X?+a1 X +ag) then we
could use the novel basis conversion method proposed by Kaliski and Yin [KY98].
But their method can not be directly applicable to the countermeasure using field
isomorphism because in step 1 a quadratic irreducible polynomial X2+a; X +aq
is randomly chosen. So, whenever a quadratic irreducible polynomial is randomly
chosen we should do square root calculation to represent a root of X2 + X + 1
with respect to basis of the randomly chosen field GF(p)[X]/(X? 4+ a1X + ao).

Remark 5. In Table 4 we assume that squaring takes 80% of the complexity
taken for multiplication in GF(p). The result of the second low in the above
table could be changed depending on the choice of basis and multiplication
(squaring) method. However, if the basic operations such as 22, zy, 2P, vz — yzP
are overlooked in the construction of GF(p?) there is not any more advantage
of speed on XTR. For example, when p is 170-bit prime the cost S,, of second
low is 129 times slower than that of the first low in the above table.

Remark 6. The field isomorphism method is originally proposed by Joye and
Tymen to protect against DDPA for elliptic curve cryptography [JTO01].

Randomization of the Private Exponent The randomized exponent meth-
ods [Cor99] is well known countermeasure against DDPA.

The computation of S,, =XTR-SE(c, n) is done by the following algorithm:

1. Select a random number r.
2. Compute n’ =n+r-q.

11

3. Compute S,, = XTR-SE(¢,n’). Note that

XTR-SE(¢,n') = (-1, Cnrscnry1) = (Tr(g” 1), Tr(g"™), Tr(g" ")) =
(Tr(g"=Y),Tr(g"),Tr(g"*')) = XTR-SE(c,n), where ¢ = Tr(g). (x) : as
order of g is prime gq.

—
N>

Efficiency of the countermeasure : The effective key length may increase
depending on the bit length of r - g. In general, the recommended bit length of
r is over 20 bits. Thus required computing time become at least 1.2 times than
that of without countermeasure.

4.2 Countermeasure against Address-bit DPA

Address-bit DPA is based on the relation between a secret value and addresses
of the accessed registers. In order to resist ADPA, this relation should be hidden.

We use random number 71271 4 - -+ + 7,2 + 1y where r; € {0,1}. Define
[a]s denote remainder of ¢ modulo 3 for any a € Z. For example, [5]3 = 2.

Goal : Remove the relations described in Property 1.
If we could obtain following relations in XTR-SE, ADPA is infeasible to XTR-SE.

— When m; = 0 and r; =0,
e To update T[1] read address C0].
o To update T[2] read address C[1].
— When m; =0 and r; =1,
e To update T[1] read address C[1].
e To update T[2] read address C[2].
— When m; =1 and r; =0,
e To update T'[1] read address C[1].
e To update T[2] read address C[2].
— When m; =1 and r; =1,
o To update T[1] read address C0].
e To update T'[2] read address C[1].

We propose following XTR-SE with countermeasure against ADPA.

Efficiency of the countermeasure : The proposed countermeasure has
almost no overhead for the protection, i.e., the processing speed is no slower
than that without the countermeasure.

4.3 Countermeasure against Doubling Attack

Since no attack as efficient as the doubling attack is known on the upward double-
and-add (square-and-multiply) algorithm from the least to the most significant
bit in ECC (RSA), this routine is recommended to the countermeasure against
doubling attack.

But there is no upward algorithm in XTR. In the case of XTR, the method
of randomization of the base element by using field isomorphism proposed at
Section 4.1 could be used to break doubling attack.

12

XTR-SE with countermeasure against ADPA

INPUT : ¢ and n where n > 2
OUTPUT : S,

1. Compute initial values:
1.1. C[3] — ¢,
C[[T171(1 + mlfl)}g} —)(’TRDBL(C’[E}])7
Cllt+r—1 (14 mu-1)]s] = XTR Cont1(3,C[3], C[[1 + ri—1 (1 + mi—1)]s], C[3]),
and C[[2 + rl_l(l + ml_l)]3] — XTRDBL(C[[T1_1(1 + ml_l)]3]).
1.2. If n is even, n replace n — 1.
Let n=2m+1and m =3 m;2’ with m; € {0,1} and m; = 1.
2. for j =1 —1 downto 0
2.1. T[l} — XTRDBL(C[[’ITLJ + 7"]'(1 + m])]g})
2.2. T[2) « XTRDBL(C[[1 + m; + r;(1 + m;)]s])
2.3. if (m; = 0) then
fT([3] — X)TIE_C%_I(C[[rj(l +m;)ls], Cl[1 47 (1 +my)]s], C[[2 + (1 + my)]s], C[3])
if (m; = 1) then
T3] — XTR-Cont1(C[[r; (1 + my)]s], C[1 + 5 (1 + my)]s], Cl[2 + r; (1 + m;)]s], C[3])
If (j = 0) go to step 3.
2.4 Clirs-1(1+mj1)]s] — T[]
2.5. C[[l + ’I“jfl(l + mjfl)]g] — T[S}
2.6. C[[2 + ’I“j_1(l + m]'_l)]g] — T[Q}
3. Compute C[0] — XTR_Cn42(T[1],T[2],T[3],C[3]).
If n is odd then return (T[1], T[3],T[2]),
else return (73], T'[2], C[0]).

Remark 7. As previously remarked the countermeasure using field isomorphism
is not efficient. Construction of an efficient countermeasure against doubling
attack is an open question.

4.4 Combining Countermeasures

In this section, we only deal with SPA, DDPA, ADPA, and doubling attack de-
scribed in the Section 3 as the attack algorithm for XTR-SE. As we saw in the
previous section, some all countermeasures only resist specific attacks, for ex-
ample the randomized exponent method is good countermeasure against DDPA
but it could be broken by the doubling attack [FV03]. Thus we should combine
them to resist the referred SCA, namely XTR-SE should be added following
countermeasures: randomization of the base element using field isomorphism
(DDPA+doubling attack) + randomized addressing (ADPA). Note that XTR-
SE does not need a countermeasure against SPA.

5 Comparison among XTR, ECC, and RSA

In this section we compare XTR to ECC and RSA with countermeasures against
SCA, such as SPA, DDPA, ADPA, and doubling attack.

13

In the case of ECC : Itoh et al. [IIT03] recommended the best combina-
tion countermeasures against SPA, DDPA, and ADPA from the security level
and processing speed: binary method (from MSB or LSB)+ double-and-add-
always method (SPA) + randomized projective coordinate (or randomized curve)
(DDPA) + randomized addressing (ADPA). To defeat doubling attack upward
binary method could be used. Thus in ECC, upward binary method (i.e., from
LSB) (doubling attack) + double-and-add-always method (SPA) 4 randomized
projective coordinate (or randomized curve) (DDPA) + randomized addressing
(ADPA) are needed to resist against SCA.

Note that above recommended combination of countermeasures is not secure
against Goubin’s attack [Gou03]. Thus if Goubin’s attack [Gou03] is considered
ECC needs extra countermeasure such as point blinding or randomization of the
private exponent. Goubin’s attack [Gou03], however, could not be applicable to
XTR and RSA.

In the case of RSA : upward binary method (doubling attack) + square-
and-multiply-always method (SPA) 4+ randomization of the private exponent
(DDPA) + randomized addressing (ADPA) are needed to resist against SCA.

In the case of XTR : XTR-SE + randomization of the base element using field
isomorphism (DDPA and doubling attack) 4+ randomized addressing (ADPA) are
needed to resist against SCA. Note that XTR-SE does not need a countermeasure
against SPA.

Efficiency : If the side channel attack is not considered, XTR is faster than
170-bit ECC and 1020-bit RSA in the signing (decrypting) step [LV00a].

We roughly compare the efficiency among ECC (170-bit), RSA (1020-bit), and
XTR (170-bit) with the countermeasures against SCA. Note that in the case of
ECC we also consider Goubin’s attack. We ignore the cost for randomization
or transformations required in the countermeasures such as randomized pro-
jective coordinate and randomized addressing because they are relatively small
compared to basic operations, for instance, point addition or 1020-bit multipli-
cation.

— ECC : 87 point additions and 2 point doublings are additionally required
in the combination of countermeasures.
e 85 (= 170/2) point additions are additionally required in double-and-
add-always method.
e 2 point additions and 2 point doublings are additionally required in point
blinding (countermeasure against Goubin’s attack).
Thus required computing time become at least 1.39 times than that of scalar
multiplication without SCA countermeasures.

— RSA : 530 1020-bit multiplications and 20 squarings are additionally re-
quired in the combination of countermeasures.
e 510 1020-bit multiplications are additionally required in square-and-
multiply-always method.

14

e 20 1020-bit multiplications and 20 squarings are additionally required
in randomization of the private exponent if the bit length of random
number r is 20 bits.

Thus required computing time become at least 1.41 times than that of single
exponentiation without SCA countermeasures.

— XTR : The efficiency of XTR-SE with SCA countermeasures is at least 129
times slower (without considering the cost of basis conversion) than that of
XTR-SE without that.

Thus the comparison of efficiency among XTR, ECC, and RSA with SCA
countermeasures may be meaningless if there is no efficient countermeasure
against doubling attack.

6 Conclusion and Remark

In this paper, we investigate the security of side channel attack on XTR. In
[LV00a,SL01] authors remarked that XTR-SE is less susceptible than usual ex-
ponentiation routines to environmental attacks such as timing attacks and Dif-
ferential Power Analysis (DPA).

However we showed that XTR-SE is vulnerable to DDPA [Cor99], ADPA
[ITT02], and doubling attack [FV03]. XTR-SE is, however, secure against SPA if
the order of computation is carefully considered.

Moreover, We proposed two countermeasures that prevent from DDPA and a
countermeasure against ADPA. One of the countermeasures using randomization
of the base element proposed to defeat DDPA, i.e., randomization of the base
element using field isomorphism, could be used to break doubling attack. If we
only deal with SPA, DDPA, ADPA, and doubling attack as the attack algorithm
for XTR-SE, XTR-SE should be added following countermeasures: randomiza-
tion of the base element using field isomorphism (DDPA and doubling attack)
+ randomized addressing (ADPA).

As the countermeasure against doubling attack is very inefficient, the effi-
ciency of XTR-SE with SCA countermeasures could not be comparable with
that of ECC or RSA with SCA countermeasures. To maintain the advantage
of efficiency of XTR a good countermeasure against doubling attack is actually
necessary. Note that construction of an efficient countermeasure against doubling
attack is an open question.

As a final conclusion, we hope that this first step towards side channel attack
on XTR will be a motivating starting point for further research.

References

[Cor99] Coron, J.S., Resistance against Differential Power Analysis for Elliptic
Curve Cryptosystems, Cryptographic Hardware and Embedded Systems
(CHES’99), LNCS1717, (1999), 292-302.

15

[CMOYS]

[FV03]

[Gou03]

[11T02]

[11T03)]

[JT01]

[Koc96]

[KJJ9S]

[KJJ99]

[KY98]

[L97]

[LVO00a]

[LVOOb)

[LVO1]

[M93]
[MDS99]

[0S00]

Cohen, H., Miyaji, A., Ono, T., Efficient elliptic curve exponentiatiion using
mized coordinates, Proceedings of Asiacrypt 1998, LNCS1514, (1998), 51-
65.

http://wuw.ecstr.com

Fouque, P.-A., Valette, F., The Doubling Attack Why Upwards is better than
Downwards, Workshop on Cryptographic Hardware and Embedded Systems
2003 (CHES 2003), LNCS 2779, (2003), 269-280.

Goubin, L., A Refined Power-Analysis Attack on Elliptic Curve Cryptosys-
tems, Public Key Cryptography, (PKC 2003), LNCS 2567, (2003), 199-211.
Itoh, K., Izu, T., Takenaka, M., Address-bit Differential Power Analysis of
Cryptographic Schemes OK-ECDH and OK-ECDSA, Workshop on Crypto-
graphic Hardware and Embedded Systems 2002 (CHES 2002), LNCS 2523,
(2002), 129-143.

Itoh, K., Izu, T., Takenaka, M., A Practical Countermeasure against
Address-bit Differential Power Analysis, Workshop on Cryptographic Hard-
ware and Embedded Systems 2003 (CHES 2003), LNCS 2779, (2003), 382-
396.

Joye, M., Tymen, C., Protections against differential analysis for elliptic
curve cryptography: An algebraic approach, Cryptographic Hardware and
Embedded Systems (CHES’01), LNCS2162, (2001), 377-390.

Kocher, C., Timing Attacks on Implementations of Diffie-Hellman, RSA,
DSS, and Other Systems, Advances in Cryptology - CRYPTO 96, LNCS
1109, (1996), 104-113.

Kocher, P., Jaffe, J., Jun, B., Introduction to Differential Power Analysis
and Related Attacks, 1998.
http://wuw.cryptography.com/dpa/technical.

Kocher, C., Jaffe, J., Jun, B., Differential Power Analysis, Advances in
Cryptology - CRYPTO ’99, LNCS1666, (1999), 388-397.

Kaliski, B.S., Yin, Y.L., Storage-Efficient Finite Field Basis Conversion,
Proceedings of SAC 98, LNCS1556 , (1998), 81-93.

Lenstra, A.K., Using Cyclotomic Polynomials to Construct Efficient Dis-
crete Logarithm Cryptosystems over Finite Fields, The 2th Australasian
Conference in Information Security and Privacy, (ACISP 1997), LNCS1270,
(1997), 127-138.

Lenstra, A.K., Verheul, E.R., The XTR public key system, Advances in
Cryptology - CRYPTO 00, LNCS1880, (2000), 1-19.
http://www.ecstr.com

Lenstra, A.K., Verheul, E.R., Key improvements to XTR, Proceedings of
Asiacrypt 2000, LNCS1976, (2000), 220-233.

http://www.ecstr.com

Lenstra, A.K., Verheul, E.R., Fast irreducibility and subgroup membership
testing in X TR, Public Key Cryptography, (PKC 2001), LNCS 1992, (2001),
73-86.

http://wuw.ecstr.com

Menezes, A.J., Applications of Finite Fields, Waterloo, 1993.

Messerges, T., Dabbish, E., Sloan, R., Investigations of Power Analysis At-
tacks on Smartcards, preprint, USENIX Workshop on Smartcard Technol-
ogy, 1999.

Okeya, K., Sakurai, K., Power Analysis Breaks Elliptic Curve Cryptosys-
tems even Secure against the Timing Attack, Progress in Cryptology - IN-
DOCRYPT 2000, LNCS1977, (2000), 178-190.

16

[OT03] Okeya, K., Takagi, T., The Width-w NAF Method Provides Small Memory
and Fast Elliptic Scalar Multiplications Secure against Side Channel At-
tacks, Topics in Cryptology, The Cryptographers’ Track at the RSA Con-
ference 2003 (CT-RSA 2003), LNCS2612, (2003), 328-342.

[SLO1] Stam, M., Lenstra, A.K., Speeding Up XTR, Proceedings of Asiacrypt 2001,
LNCS2248, (2001), 125-143.

http://wuw.ecstr.com

17

