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Abstract. A broadcast encryption scheme for stateless receivers is a data distribution method which
never updates users’ secret information while in order to maintain the security the system efficiency
decreases with the number of revoked users. Another method, a rekeying scheme is a data distribution
approach where it revokes illegal users in an explicit and immediate way whereas it may cause inconve-
nience for users. A hybrid approach that appropriately combines these two types of mechanisms seems
resulting in a good scheme. In this paper, we suggest such a hybrid framework by proposing a rekeying
algorithm for subset cover broadcast encryption framework (for stateless receivers) due to Naor et al.
Our rekeying algorithm can simultaneously revoke a number of users. As an important contribution, we
formally prove that this hybrid framework has a pre-CCA like security, where in addition to pre-CCA
power, the adversary is allowed to adaptively corrupt and revoke users. Finally, we realize the hybrid
framework by two secure concrete schemes that are based on complete subtree method and Asano
method, respectively.

1 Introduction

Broadcast encryption is a mechanism that allows one party to securely distribute his data to
privileged users. Since its invention by Fiat and Naor [8], it has been extensively studied [2,4-6,
10, 14].

A subset cover method based broadcast encryption scheme for stateless receivers was studied by
Naor, et al. [12]. Further work appeared in [1,6, 14]. In this mechanism, a user’s secret information is
never updated, and user revocation is implicitly achieved by subset cover technique in the broadcast
phase. This method has an advantage of no key updating, while it has a drawback that when the
number of revoking users grows large, the system efficiency decreases. For example, it takes more
time to compute ciphertext, diminishes the effective capacity of users and adds burdens to system
management. A complementary mechanism is a rekeying scheme [4,13,15,16] where a user’s secret
information is explicitly updated for each membership updating. Thus it avoids the weakness of
a stateless scheme. However, it may cause inconvenience to users due to frequent membership
updatings.

Since the above two mechanisms have complementary features, a hybrid scheme inheriting
advantages of two seems to be a good solution. Such a scheme should require the possibility to
update each user’s secret information. Although this is not the case for applications like DVD, it is
absolutely reasonable for applications such as stock quotes, online database, etc. Thus in the sequel,
we assume that this condition is always satisfied. The first work along this hybrid approach was
due to Garay, et al. [9]. In their method, implicit revocation is achieved by the threshold sharing
technique and the property of cover-free family. When the number of the (implicit) revoking users
reaches the threshold, it updates affected users’ secret information explicitly by uni-cast approach,
which is inefficient. Furthermore, a provable security is not provided in this paper. The first provably



hybrid scheme was a public key based method due to Dodis, et al [7]. However, in their scheme, a
communication overhead is always the security threshold even if there is only one illegal user. Also,
to rekeying the users’ key set, it only broadcasts a new common secret to them. As a result, leaking
such a seed would be possible to enable a revoked user to decrypt the ciphertext again while the
traitor is never traced.

In this paper, we propose a hybrid framework called Hyb. We obtain this framework by propos-
ing a rekeying algorithm to the subset cover framework for stateless receivers [12]. Our rekeying
algorithm can revoke a number of users simultaneously. Furthermore, our algorithm is generic thus
is applicable to a wide class of key structure including Logical Key Hierachy (LKH) and it also
maintains the key structure of the user’s secret information set after updating (e.g. dependence
between keys can be used to reduced the user key size, see Hyby in Section 3 for an example).
In contrast, a simutaneously rekeying algorithm was previously proposed in [11]. However, their
algorithm is only applicable to LKH structure and no dependence between keys can be used to
reduce the user key size.

In the security definition, the adversary is allowed to have a power of chosen ciphertext attack in
the preprocessing model (pre-CCA). As an important contribution, we prove that Hyb framework
is secure against such a pre-CCA like attack under the standard model, where besides the pre-CCA
power, the adversary is also allowed to corrupt and revoke any user, adaptively. Since our rekeying
algorithm itself is a generic framework and has LKH rekeying scheme as an example, an interesting
implication of our security theorem is that a provable security for such rekeying schemes in fact has
be obtained. To our best knowledg, even provable security for simple LKH rekeying has not been
previously obtained yet.

Finally, we realize Hyb framework by two pre-CCA secure concrete schemes, Hyb.s and Hyba
that are based on complete subtree method [12] and Asano method [1], respectively. The latter is
most interesting since it demonstrates the rekeying algorithm has a short ciphertext while main-
taining the user’s key structure. To explictly revoke r users, Hyb4 only needs a length of updating
ciphertext proportional to Zj —14arlog,(n/r), where n is the maximal number of users and a is
a constant. Since we always set r upbounded by a constant, the overhead above is acutually only
logarithmic.

This paper is organized as follows. In section 2 we introduce Hyb method. In section 3 we give
two schemes based on complete subtree method and Asano method, respectively. The security of
this method is proved in section 4. We end with some discussions in section 5.

2 A Framework for Hybrid Broadcast Encryption

In this section, we suggest a framework for hybrid broadcast encryption that captures the advan-
tages of a stateless scheme and a rekeying scheme both by extending the subset cover framework
for stateless receivers by Naor et al. [12]. Our contribution here is mainly a new rekeying algorithm.

To achieve this, we explicitly define a user secret information I'(u) instead of an abstract symbol in
[12]. We call this framework Hyb.

Preprocessing Phase

1. Let U be the set of all possible IDs. Broadcast Center (BC) defines a collection of subsets of
U:5y,---,5,, associates a master key I; and a secret key k; for S;,¢ = 1,---,z, where z is
polynomially bounded. Suppose that each singleton {u} is contained in the collection. (Note: to
enable implicitly revoking any subset of users in the broadcast phase. This is necessary. See the



broadcast phase.) I; implies k; (and probably also implies some I; with S; D S;). For security
reason, we require that I; is not implied by I; for any S; D S;. (see the decryption phase.)

2. Let I(u) be the subset of {I;|u € S;,i=1,---, 2z} obtained by removing all I; that are implied
by another master key, say I;. We stress that the user key information is defined to consist of
some I;’s instead of k;’s since the dependence in the former case will enable to reduce the key
size. This is well explained by Hyb4 in Section 3.

Note: throughout this paper, A D B means that A strictly contains B. Similar definition is applied
to C .

Join Phase When a new person wants to join, BC first checks whether there is a free ID. If yes,
he assigns this ID, say u, together with secret key information I'(u) to this person. Later, we refer
this person by user u as long as he is not explicitly purged from the system.

Broadcast Phase When BC wants to broadcast message M to all users U except those in R, he
first finds a set cover S;,,---, S, such that S;, U---US; = U\R. Then he forms the ciphertext as

%(Mv R) = <i17 e '7im7Eki1 (k)v e '7Ekim(k)7Fk(M)>7 (1)

where F and F are two encryption algorithms and k is a random number of appropriate length.
(Note: if the scheme is enabled to implicitly revoke any subset of U, then each {u} has to be con-
tained in the collection Sy,---,S, since otherwise there is no way to form a subset cover for the

case U\R = {u}.)

Decryption Phase When u € U\R receives H(M, R), he first finds j such that v € S;;, then he
computes k;; by using I(u) and gets M from it. (Note: If I; is implied by I; for some S; D S;, then
for R = U\S;, H(M, R) can be decrypted by an unprivileged user v € S;\S;. Thus it is necessary
to require that I; should not be implied by I; for S; D S;.)

Rekeying Phase In this part, we propose a rekeying algorithm that updates legal users’ secret
information in order to explicitly revoke some users.

Definition 1. Let Sy,---,S. be defined as before. We say that S; has a level | if there exists a
chain of length [:
Sil C 512 c---C Sil_l C Sl7

where i1, -+, 0_1,1 are distinct; and there exists no such a chain of length [ + 1.

Definition 2. For two subsets S; and S; with S; C S;, if there is no Sy such that S; C Sy C S,
then we say that S; 1s a child of S;.

Let Iy,---,I. be defined as before. We partition them into subsets Cy,---,C), for some integer u
such that each C; is generated independently of the rest subsets and no C; can be further partitioned
to smaller such subsets. It follows that if C; is defined as the output of an algorithm G; with random
input string cn,;, then cn; is independent of the rest c¢n;’s. We now define an equivalent relation on
I, -, I.. We say that I;, I; are equivalent if there exists a sequence I, (= I;), Iy, - - -, I,(= I;) such
that generation procedures for any adjacent keys I, I;,,, partially share random input string. It
is clear from the definition of C; that each C; is an equivalent class that is independent of the rest

C;’s. We let C'(I;) denote the class C; with I; € Cj.



Definition 3. We say that I, is dominated by R C U if there exists I; € I(u) for some v € R such
that C(I;) = C(I;). In this case, we also say S; is dominated by R. Define

D(R) = {S;|I; is dominated by R and I, € I(u) for some u € U }. (2)

We warn that D(R) is not necessary to be simply the collection of all subsets dominated by R.

In order to update I; to achieve revocation while maintaining the user key dependence so as to
keep a small key size, it is necessary to update C'(I;) (i.e., generate fresh I} for each I; € C'(I;) and
make it known to its legal users). Our security theorem in Section 4 implies that this is suficient
too. Thus to revoke all the users in R, it is sufficient and necessary to update {I;|S; € D(R)}. In
the following, we present our new simoutaneously rekeying algorithm in Table 1 to achieve this goal
where we suppose that the maximal level for §y,---,5, is L.

1. BC first determines D(R) and computes new ] for all S; € D(R);
2. For each S; € D(R) at level 1 do
Suppose S; = {u}. If u € R, then send FEx,(I]) to user u.
3. Forl=2,---,L do
For each S; € D(R) at level [ do

For each child S; of S; broadcast Ej(I]) to all users in Sj, where k} = k; if I; is not
7

updated; otherwise k; is the new value.

4. Set IDs in R to be free.

Table 1. Generic Rekeying Algorithm

To get better understanding, a graphic interpretion is demonstrated in Figure 1. There, suppose
R = {uy,us}, D(R) is the collection of all shaded S; excluding S;. S12 has Sg and Sy as its children
but Ig, I1o imply Iy, respectively. Thus, there is no need to transmit I], to Sg and Sig. Since {us}
and {us} are both in D(R). Thus, uy (resp. us) can update Iy to I} (resp. I5 to I}) while uy and
u4 can not update their key information at level 1 (and keys in upperlevels).

Lemma 1.
1. Every set at level 1 has a form of {u},u € U.
2. All users not in R can update his secret information properly.

Proof. 1. This is an immediate consequence of the fact that any {u} is in the subset collection.

2. We only need to show that any new information I for any I; € I(u) for some v € U which is
dominated by R can be received by its desired users S;\R. By definition, if I; € I(u) is dominated
by R, then S; € D(R). Thus I; will be updated to I/ by Step 1. To show the completeness, we only
need to show that for each S; € D(R), I} can be received by S;\R. This is done by induction on
level I. When [ = 1, S; has a form of {u}. By Step 2, if u ¢ R, then he can get I} since he can
compute k;. Assume that for any S; € D(R) at level lower than [, its legal users can receive I]. We
show that for any S; € D(R) at level [, its legal users can receive I} too. Indeed, for each child S; of
Si, S; has a level lower than [. Thus if S; € D(R), all users in S;\R can compute the new version
I;. If S; ¢ D(R) but dominated by R, by definition of I(u), for each u € S;\R, there exists an I
that implies I; for some S; with lower level than S;. Therefore, I]‘ can be computed by u. Thus he
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Fig. 1. Graphic Interpretion of Generic Rekeying algorithm

can obtain I]. If I; is not dominated by R at all, then £} = kj. Thus S;\R can obtain I too. On
the other hand, for any u € S;, there exists a child S; of S; that contains u since {u} is contained
in the subset collection. Thus I} can be received by S;\R. g

3 Two Concrete Schemes

3.1 Hyb,, scheme

Now we realize the Hyb framework by a concrete construction Hyb.s scheme. This scheme is based
on a complete subtree method for stateless receivers [12]. The rekeying algorithm here appeared in
[11]. We present it since it is simple. A more interesting scheme is our consequent Hyb 4.

Preprocessing Phase

1. BC builds a binary complete tree TR with n leaves. Let these leaves from left to right be users

U, -+, Up. And let the internal nodes be vy, ---,v,_1 in width first order. For simplicity, we
also identify node u; with v;4,-1,7 = 1,---,n. Define S; to be the set of users rooted at node
vi,t=1,---,2n — 1. BC picks a secret random number k; of appropriate length and associates

it to S;,e=1,---,2n — 1. Define I; simply to be k;.
2. I(u):={L;lu € S;,i=1,---,2n — 1}. In other words, I(u) is the set of k; lying on the path from
u to the root.

Join Phase The same as in the framework.

Broadcast Phase If BC wants to broadcast message M to all users U excluding R, then BC first
finds a Steiner tree Steiner(R) (i.e., the smallest subtree of TR that covers users R and the root vy).
Let v, viy, - - -, v;,,, be all the nodes that hang off Steiner(R). Then since S; US;,U---US; = U\R,



BC forms the ciphertext as follows
H(M, R) = (i1, iz, -, im, Ekil (k) Ekim (k), Fi(M)), (3)

Decryption Phase When receiving H(M, R), a user u € U\R first finds j such that u € S;;. Since
u has k;; he can get message M.

Rekeying Phase The maximal level among that of subsets Sy,---,S9, 1 is L = 1 + logn. For
each internal node j with two children j;, jo, we have that S; has exactly two children: S;,5;,.
Since that S; has level [ is equivalent to say v; at depth L — [, where the depth of a node is defined
as the distance from the root to this node, the rekeying algorithm can be written in Table 2. This
algorithm was essentially proposed by Kurnio, et al. [11] which is an extension of that in [3,15] to
achieve simultaneous revocations. Suppose that R is the set of users to be revoked.

1. BC finds Steiner(R) in TR.
2. For each v; € Steiner(R) at depth L — 1,
BC updates k; to a random number k; of the same length.
3. Fory=L—-2,---,0
For each node v; € Steiner(R) at depth j,
BC updates k; to a random key k; of the same length;
let v;, and v;, be the two children of v;, then
sends Ejs (k) to all users rooted at vi,; sends Ej: (k!) to all users rooted at v;,, where
1 2

ki, (reps. ki,) is the current associated random number for vi, (resp. vi,) if it is updated;
otherwise, ki, = ki, (reps. ki, = ki, ).
4. BC sets IDs in R to be free.

Table 2. Rekeying Algorithm for Hyb,,

A small example is demonstrated at Figure 2. There, R = {uy, us}.

Now we briefly discuss the performance of Hyb.s. Each user has a key size |I(u)| = 14 logn.
To implicitly revoke r users in the broadcast phase, communication overhead has a upperbound
rlog(n/r), which was proved in [12]. To explicitly revoke r users in the rekeying phase, the number
of ciphertexts required is upperbounded by 3r — 2 + 2rlog(n/r), where the proof is essentially to
show that the number of internal nodes in Steiner(R) is upperbounded by r — 1+ rlog(n/r).

3.2 Hyb, Scheme

In this subsection, we realize Hyb framework by an interesting scheme called Hyb 4 scheme. This
scheme is based on a subset cover scheme for stateless receivers, which we call Asano method [1].
Our main contribution here is an efficient simultaneous rekeying algorithm and a formal proof of
the security.

Preprocessing Phase

1. BC chooses a RSA composite N = pq and 2¢ — 1 primes Py, for h € {0,1}°\{0}, where p, ¢ are
two large primes and « is a constant number. Then he makes N and all P, for h € {0,1}*\{0}
public.
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Fig.2. A Small Example of Rekeying algorithm in Hyb..

2. BC constructs an a-ary complete tree with n leaves. Let these leaves from left to right denote

users uq,- - -, Uy, let the internal nodes be wvy,---,vn—1 in width first order. Identify w; with
a—1
U n=1,8=1,--+ n. Foreach i=1,---, Zj and h = hy---he € {0,1}\{0}, let
a—1

S; ni=set of users rooted at some child j (from left to right) of v; for j € {i1,-- &}, (4)

where iy = 1foreach I € {i1,---,it}; iy = 0, otherwise. Let To=[]p,c(0,1}a\(0} £ For each inter-

nal node v;, BC chooses a random number £; and then associates S;; with key k@h::f(kiTO/Ph)

and secret information I, p, = kiTO/B(h), where f() is a hash function and B(h)=][],.; . Here
“h < b” means that the ¢th bit h; of & is less than or equal to the ¢th bit b; of bforall: =1, - -, a.

3. Now we define I(u) for a user u as follows

n—1

I(u):={I; ;|u is rooted at the jth child of v;,j =1,--+,a,0=1,---,

2 (5)

where e; is an a-bit string and each of its component is 0 except the jth bit. For example, if
n = 27, then I(Uz) = {1.1,1007 12,1007 —75,010} and I(U4) = {1.1,1007 12,0107 I6,100}-

Join Phase User join is done the same as in the framework.

a—1

Broadcast Phase If BC wants to broadcast message M to all U except R, then he first finds
a Steiner tree Steiner(R) in TR. Let {v;, vy, -, v;,.} be all the internal nodes in Steiner(R).
Associate an a-bit number H (j) with each node v; € {v;,,- -, v; .}, where the tth bit of H(j) is 1
iff the tth child of v; is not in Steiner(R). Remove v; from {v;,,---,v; } if H(j) = 0. WLOG, we

still let v;,, -+, v;,, denote the remaining nodes. Then
Sil H (i) J---u Sim,H(im) = U\R. (6)
Thus the ciphertext is defined as follows.
H(M, R):=(i1," ", im, Ekil H(i) (k)s - Ekim,H(im) (k), Fi(M)). (7)



For example, consider n = 27 and R = {u4,u11} in Figure 3. The Steiner(R) is the thick
subtree and the cover subsets are Sy oo1 = {u;|t = 19,---,27}, So101 = {uw1, ug, us, ur, us, ug},
Seo11 = {us, us}, Sz011 = {u1s, -+, u2}, Ss101 = {w10, w12}. And the encryption keys used are
kl,OOl _ f(k‘fO/POOl)7 k27101 _ f(k{O/Plol), k6,011 _ f(kgo/Pou)7 otec.

ki
0 0 1
ks ky
0 1 \1
ks kg k1o k1 k1o ki3

uy ug Uy ug U7 Uy Uy U U3 Uy U9 Uo7

Fig. 3. An Example of Broadcast Procedure in Hyba

Decryption Phase When receiving H(M, R), user v € U\R first finds j such that u € S;; 1r(;;)-
Then he can compute k;; p(;;) from .T,'J,ﬁj,,7 where we suppose that u is rooted at the j'th child of
v;;. Then he can get M. In the above example, for u; € U\R, we have I3 100 = szO/B(IOO) € I(u),

where B(100) = PyooPio1Pi1oPi11. So he can compute kg 101 = f(szO/Plol) and then decrypt k& and
M easily.

Rekeying Phase If an internal node v; is the jth child of another internal node v, then S; . = Stﬁj,
where a-bit number e = 11---1. Here when we define notion of level and child for each Sy, ---,.5.,
we make a little change by “pretending” S;. is a proper subset of S; .. Under this modification,
our rekeying scheme can be adapted from the framework as in Table 3, where R is the set of users
to be revoked and thus D(R) = {S;,|v; € Steiner(R),j=1,---,a}.

For example, consider the example in Figure 3. R = {u4, u11}. The main rekeying procedure is
as follows.

a. BC updates ky, ko, k3, kg, ks to radom keys &, kb, k%, kG, k§.
b. Depth 2: Ek6,010[IE/5,010] ( resp. Ek6,001 [Ié,001]7Ek8,100 [IE/%,IOO]?Eks,om [IE/%,OOI]) is sent to u5( resp.

U,y U10, U12)-
c. Depth 1: For node vy, Ey, ,,,[15 100] (resp. By

6,111
at vs (resp. ve, v7). Similar updating ciphertexts can be computed for node vs.

d. Depth 0: For node vy, Byy  [1]00) (resp. Bz (I o)s Eyyis [I} oon)) s sent to users rooted

3,111

[15.010)s Ekz 11115 001]) 18 sent to users rooted

at vy (resp. vs, v4).



1. BC finds Steiner tree Steiner(R),

2. For each node v; at depth L — 1 of Steiner(R) (assume the maximal depth is L),
he changes k; on node v; to a random number k! of the same length;
For j =1,---,a, let u be the jth child of v;, BC sends Ekz,ej ([{yej) to u if u € R, where
]{yev is the fresh version of ]i,ej.

3. Define an a-bit number e = 11--- 1.

Forl=L-2,---,0do

For each node v; in Steiner(R) at depth I, change k; to a random number k; of the same
length.
For y=1,---,a, do
Let the jth child of v; be v¢. Then he broadcasts Eklt,e(]l{,ej) to all users rooted at node
v, where kéye is the new value if it is updated; otherwise kéye = k¢,c. Here ]{yej is the fresh
version of ]i,ej.

4. BC sets IDs in R to be free.

Table 3. Rekying Algorithm for Hyba

Now we briefly discuss the performance of Hyb,. The size of a user’s personal information
I(u) is log, n. To implicitly revoke r users, the communication overhead in the broadcast phase is

r(14log,(n/r)), as proved in [1]. To explicitly revoke r users by rekeying algorithm, the number of
the required ciphertexts is upperbounded by % — 1+ arlog,(n/r), where the proof is essentially

to show that the number of internal nodes in Steiner(R) is upperbounded by =1 + rlog,(n/r).

a—1

We stress that if we directly update all secret information dominated by R using KLH, the required
ciphertexts would be approximately 2¢/a times larger than ours!!

4 Security

In this section, we provide a proof of the security for Hyb method. We first introduce the notion of
key indistinguishability which is a variant of that in [12]. Our definition is to use more information
about user secret information I'(u).

Definition 4. Let S{,S3, -+, S. be defined as before. Consider the key assignment for C;. Let B
be a probabilistic polynomial time adversary that chooses I; € C; as his target and receives I for
all Iy € C; with Sy € S;. We say that key assignment C; satisfies key indistinguishability if B can
not distinguish k; from a random value r; of the same length, i.e.

| Pr[B(Aj, kj) = 1 for j « B] = Pr[B(A;,r;) =1 for j < B]| (8)

is negligible, where A;={I;|I; € C;, Sy € S;}.
We say that the (static) key assignment of Hyb framework satisfies key indistinguishability if
C; satisfies this property for each 1 =1,---, u.

Lemma 2. let Sy,---, S, be defined as before. Suppose C;, i = 1, -, u satisfies key indistinguisha-
bility. Let S;,,---,S;,, be all the subsets contained in S; such that I;, € C(I;),t =1,---,m. Then
(kiy -+, ki,) is indistinguishable for any probabilistic polynomial time adversary that receives all

I, for I € C(I;) with S, € S;.

The proof of the lemma is similar to that of Lemma 9 in [12]. So we omit it here.



Now we define the security of a Hyb scheme. This definition captures the threats from explicitly
revoked users, current legal users and their collusions. The adversary can schedule any corruption,
revocations of users of his choice and he also has a pre-CCA power to request encryption/decryption
of broadcast messages/ciphtexts of his choice. Formally,

Definition 5. Consider the following game between a challenger and an adversary A against a
Hyb scheme.

1. A can take the following actions:
(i) He can choose (M;, R;) of his choice and request for a ciphertext H(M;, R;);
(11) He can ask for decryption of any ciphertext H(M], R.) of his choice. As a result, he will
receive the plaintext M),
(11i) He can request rekeying algorithm on a set R. of his choice;
(iv) He can corrupt any user u. And if a user u is corrupted, then I(u) is provided to A.
2. Suppose the set of users §2 are currently corrupted (still privileged). Then A chooses (M, R) of
his choice with 2 C R and gives it to the challenger.
3. The challenger picks M' = M or a random string of the same length and forms a ciphertext
H(M', R). Then he provides it to A, who tries to guess which is the case.

Then A outputs a guess bit. A is said to be successful if his guess is correct. The Hyb scheme is
said to be secure if the success probability of A is negligible.

In the above definition, we do not authorize the adversary to control the join operation since
this does not result in a higher security. Indeed, our definition does not restrict the join activity of
potential users. Thus it contains the case where every user ID is always in use. Especially, if a user
is purged from the system, another person will join as this ID immediately. Note security in this
case implies the security in other cases no matter the adversary controls the join operation or not
since its view of the former covers the view of the latter.

We show that under the above adversary model, our Hyb framework is secure in the standard
model. The proof is quite long. We put it in appendix.

Theorem 1. Assume that the key assignment on C; satisfies key indistinguishability for 1 =
1,---, p, that encryption algorithm E is pre-CCA secure, and that F is semantically secure. Then
the Hyb framework is secure.

Now let us discuss the security of concrete schemes Hyb., and Hyby.

Lemma 3. For Hyb., scheme, we have C(I;) = {I;} and key assignment indistinguishability holds
for C(L;),i=1,---,2n— 1.

Proof Since each k; is uniformly random, it follows C(I;) = {I,;}. Key indistinguishability holds
since C'(I;) is not dominated by U\S;. g
By using Theorem 1, we have

Corollary 1. If encryption algorithm E is pre-CCA secure and F is semantically secure, then
Hybes is secure.

For Hyb4 scheme we first have the following lemma.

Lemma 4. For each i and a non-zero a-bit string h, C(I; ) = {Lp|b € {0,1}*\{0}}. And if we
assume f() is a random oracle, then key assignment indistinguishability holds for C'(I; p).



Proof The first conclusion follows from the fact: k; is uniform and independent of {k;|j # i}.
Now we show the key assignment indistinguishability of C(I; ) holds. For given ¢, S;p C S;p, if
and only if b < h. Thus for an adversary B that attempts to break the key indistinguishability of
C(I; 1), he will receive I;p for all b such that b £ h,i.e.,3t s.t. by = 0 and by = 1, where Ry (resp.
b;) is the tth bit of & (resp. b). Notice the following fact: assume that k is a random number and
a, c are two numbers less than N. Assume that gcd(a, ¢) = d. Then for given k* (mod N) and k¢
(mod N), one can compute k¢ (mod N) in O(log® N).

This fact can be easily proved by using the Euclidean algorithm. Now we come back to our proof.

Notice I;, = kiTO/B(b). It follows from the above fact that for given I; for all b with b £ h, one can
_om P
efficiently compute kiLCM{B(b)lb’(h}, which in fact is k;~°7"*" ", Here LCM() is the least common

H0¢b<h Py

multiple function. On the other hand, for given £; , one can easily compute I, for all b with

0#b<h Py

b £ h. Thus we only need to show that for given £;, , ki is indistinguishable to B. Actually,
we show that if there exists algorithm B that distinguishes %; j from a random string of the same
length with non-negligible advantage, then there exists an algorithm Znwv that inverts RSA function
2P with non-negligible probability. Now upon input o = 2, Tnv does the following

0. Znv finds @1 and @, efficiently such that @ P,+Q2To/Pr, = 1 by using the Euclidean algorithm.

1. Znv chooses a random number r and computes § = 04<H0¢b<h Po)/Ph Then he provides f together
with r to B.

2. To answer B’s queries for f() function, Znv maintains a f—list. Initially, this list is empty. For
each query y;, Znv checks in f—list whether y; was queried before. If yes, he provides the answer
recorded in the list to B. Otherwise, Znv computes v;:=a%1 - le2 and checks whether %Ph = .
If yes, he announces success and outputs ;. If y; is not queried before, he chooses a random
number ¢; of length [ and provides it to B, where [ is the output length of f. At the same time,
he adds the pair (y;, ¢;) into his f—list.

3. Finally, B outputs a bit O’ for a guess whether his challenge is random or not. If Znv does not
announce for success in the experiment, then he quits with failure.

First, 6 = $H0¢b<h P Since f() is a random oracle, it follows that (3, r) is distributed the same as in
the real world. By calculation, we can verify 'yiPh = o if and only if y; = 270/P» . Thus the responses
to queries from B are distributed the same as the responses from f() oracle of B. If 2To/Pr i not
queried before he outputs the guess bit, the guess ¥’ is correct with probability exactly 1/2. Assume
the probability that 270/ is queried is €, then the advantage of B is at most € 4 12;5 — 12;5 = e
Since we assume his advantage is non-negligible, it follows that € is non-negligible. On the other
hand, once 210/Fn is queried, Znv will succeed. It follows that the success probability of Znv is €,

non-negligible, a contradiction to the hardness of inverting RSA function. O

Now we investigate the security Hyb 4. Since we have made a modification on the definition for
level and child, we can not directly apply Theorem 1. However, one can check that the proof of
the security theorem still goes through without any modification. Thus we have

Corollary 2. If encryption algorithm E is pre-CCA secure, F is semantically secure and f() is a
random oracle, then Hyb4 scheme is secure.

5 Discussions

In this section, we give some discussions.



1. On independence of C,.--,C},. Previously, we suppose the random bits used to generate
each C'(I;) are independent of anything else. In reality, to flip a long sequence of random bits
in order to satisfy this condition is not practical. However, we stress that in fact this is not
necessary. We can replace the long sequence of coin flips by a pseudorandom sequence. And the
security of this framework still holds if the original version is secure. The proof is by standard
argument. Specifically, if the security is compromised due to this replacement, then we can
distinguish this pseudorandom sequence from a random sequence of the same length.

2. Traceability. Traitor tracing is to find out the illegal users that help construct a pirate
decoder. In [12], Naor, et al. proposed a binary search like tracing algorithm. Since Hyb method
is also based on subset-cover method, it follows that their tracing algorithm is applicable if the
considered scheme is secure and a bifurcation property is satisfied.

3. Implication of Secure Rekeying Scheme. If there is some .S; = U, and broadcast encrytion
is as (Ey, (k), Fx(M)), then our rekeying algorithm is in fact a framework for a rekeying scheme.
Thus the security theorem implies the security of this framework. Thus, the provable security
for the popular LKH rekeying scheme is obtained. To our best knowledge, it is the first formal
proof for such a scheme.

4. On unlimited number of users. For a fixed subset cover method, the maximal number of
users it can support is set in advance. We claim it is easy to obtain a system that supports
unlimited number of users. For simplicity, suppose that 7; is a realization of Hyb, which can
support 2¢ users. We construct a system 7 as follows. Initially, T is set to To. When a user
joins in, BC first checks whether every user ID in 7y is in use. If not, it assigns a free ID to the
new user. If yes, BC independently generates 77 and assigns an ID to the new user. At some
moment, let 7 be composed of Ty, ---,7;. If at this time, a new user joins in, then BC similarly
first tries to find a free ID from T, t = 0,---,¢. If yes, he assigns a free ID and corresponding
secret information to the new user. Otherwise, he independently generates 7,11 and assigns a
free ID and secret information to the new user. Broadcast and rekeying operations are done
for each 7; in T individually. For the security, we claim that if 7; is secure, then 7 is pre-CCA
too. The proof is by a simple hybrid argument. For the efficiency, if we take 7; by Hyb.s with
maximal number of users 2¢, then communication overhead and cost of rekeying algorithm only
additively increase by at most O(logn). A similar construction is applied to the case 7; taken
as Hyb, with a maximum a' users.
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Appendix

Proof of Theorem 1 If The Hyb framework is insecure, then there exists an adversary A that
breaks the security in Definition 5. We show that there is an adversary B that can break the security
of E. B achieves this by running a simulated copy of the security game in Definition 5 and answering
the queries of A with the help of his challenger. The whole is composed of several lemmas. We first
introduce the game on the strategy of B.

1.

B uniformly chooses j € {1,2,---, 2z} and ¢ uniformly from {1,---, @}, where () is an upperbound
of the number of the cover subsets when computing the ciphertext in the broadcast phase. Let
the number of requests of rekeying algorithm on any set R’ with R’'NS(I;) # 0 be upperbounded
by A — 1, where S(I;)=Upec(r;) St- Finally B chooses d uniformly from {0,1,---,A = 1}.

. B simulates Hyb scheme with Sy,---, .S, defined before. And then he runs A against it. We use

d’ to denote the number of requests up to date for running rekeying algorithm on any set R’

with R' N S(I;) # (. Initially, d’ = 0.

. If A asks for revoking R, with RN S(I;) # 0, then B increases d’ by d' =d' + 1. If d' > d, B

aborts. Otherwise, B uses his own random inputs to generate a fresh copy C(Ij) for S; € D(R})
(note if I; and I are within the same class, only one fresh copy C(I}) is generated). Then
he forms the updating ciphertext of I] by using his own knowledge except for the special case
d' = d. In this case, he first chooses a random number r,, of length |k,| for each S,, C S; with
I, € C(I;). Then if k], satistying S,, C S; and I, € C(I;), is required as the encryption key,
then instead of using k;, he uses r,, (fixed throughout the case d’ = d); and if & is required in
order to generate a ciphertext of I}, then he requests for the ciphertext of I; from his encryption
oracle. Furthermore, in case for the first time it reaches d’ = d, if it needs to encrypt I, for

Sw C 5;, B encrypts a random string rd,, of the same length instead.

If A asks for revoking R, with RN S(I;) =0, then d’ is kept unchanged. The rest actions are
the same as in the case R} N S(I;) # 0 except for the case d’ = d. In this case, if & , satisfying
Sw C Sj and I, € C(I), is required as an encryption key, he uses r,, chosen before; if k; is
required as an encryption key, then he queries his encryption oracle.

If A asks to corrupt u ¢ S, then B provides I(u) to A by using his own knowledge.

If A asks to corrupt w € S; and d’ < d, then B provides I(u) to A by using his knowledge too.



If A asks to corrupt v € Sj and d’ = d, then B aborts. (note in case d’ > d, B already aborts in
Step 3 .)

5. When A requests encryption/decryption of an arbitrary (M;, R;)/ciphertext, B computes it by
using his knowledge if no k,, satisfying S,, C S; and I, € C(I;), is required or if d' < d.
If d = d and k; is required for encryption/decryption, then in case of encryption, he chooses
the session k uniformly random of appropriate length and asks for its encryption oracle and in
case of decryption, he asks for his decryption oracle. If d’ = d and k,,, satistfying S,, C S; and
I, € C(I), is required, then he uses r, chosen before.

6. Suppose 2 is the set of users currently corrupted (i.e., corrupted but still priviledged) by A. If
A chooses (M, R), R D 2 for test, B finds a subset cover S;, US;, U---US;, =U\R.Ifi,=j
and d’ = d, then B announces for a test. Otherwise, B aborts. If B does not abort, he chooses a
random number k of appropriate length and gives it to the challenger. The challenger provides
a € {E(k), E(xy)} randomly to B, where z; is a random string of length |k|. Upon receiving «,
B chooses M' = M or a random string M"” of length |M| equally likely and forms the ciphertext

<i17"'7im7Eki1 ($1)7"'7Ek (xt—1)7a7Ekit+1 (k)77Ekzm(k)7Fk(M/)>7 (9)

i1
where z;,¢ = 1,---,t— 1 are uniformly random of the length |k|. And then B provides the above
ciphertext to A.

If B does not abort, then in case M’ = M, B outputs whatever A outputs; in case M’ is random,
B complements the output of A. If B aborts somewhere, then it outputs 0, 1 equally likely.

We denote the above game by I'"**¢. Note in this game, B, playing the role of the challenger
for A, does not strictly follows actions defined in the security defintion. For example, in the special
case, 1y is used instead of k! ; in step 3, the ciphertext for I/, is changed to the ciphertext for a
random string rd,,. We will prove that this change essentially does not matter. Toward this pur-
pose, We define a variant I of game I, "% is the same as I with exception in the
case of revoking some R; with R; N S(I;) # () and d' = d in Step 3. In I'"*? instead of generating
new C'(I7) by himself, B will receive all I} € C(I}) for S; ¢ S; and furthermore receive k,, for all
Sw C S; with I, € C'(I}). And he does not need to generate r,, for S,, € S; with I, € C(I;) and
later when required to use ry,, he uses &}, that is received above. His encryption/decryption oracle
will use the secret key k; instead of a random number in """,

Our plan for the proof of security of Hyb is as follows.

1. The probability that B won’t abort in game I'"*¥ is negligibly close to % And it is negligibly
close to the probability in game "¢,

2. If an adversary in the Hyb scheme has a non-negligible advantage, then adversary B in game
I'"*% has a non-negligible advantage, too.

3. If adversary B in game I'"®"? has a negligible advantage while it has a non-negligible advan-
tage in game I'"°™ then there exists an adversary D that compromises the key assignment
indistinguishability of Hyb.

Based on the key assignment indistinguishability of Hyb scheme and items 2, 3, we conclude that
the pre-CCA security of F is compromised, a contradiction.

Lemma 5. d' is the number of times that C'(I;) has been updated up to date.



Proof The proofs for both games I'"*¥ and I are identical. Note that if R: N S(I;) =0,
C'(I;) is not dominated by R.. Thus C(I;) keeps unupdated. In this case, d’ remains unchanged by
description of the game. On the other hand, if R;NS(I;) # 0, then there exists u € R;N.S(I;). Thus
C(I;) is dominated by uw. Thus C'(I;) will be updated. By the description of the game, d' = d’' + 1
in this case. O

Define Non — abort(I“) to be the event in game I'“ in which the adversary B does not abort,
where ¢ € {real, rand}. We have the following lemma.

Lemma 6. Pr[Non — abort(I"*")] ~ %, where &2 means “negligibly close”.

Proof Suppose (S;,,S;),- -, (Si,,S;,) are all the possible pairs of subsets, satisfying S;, C S; and
S;, is a child of S;,, or satisfying ¢; = j; and S;, = {u} for some u € S;, where t =1,-- -, ¢. Suppose
these pairs are arranged such that [Sj | < [Sj,| < -+ < |S;,|. In game I'"** when reaching the
case d’ = d for the first time, B is supposed to send the rekeying ciphertexts, Ekgt (I;t) and actually

he sends Ekgt (rdj,) in game I for t = 1,---,q. Note here E}, is the currently used key (before

receiving this ciphertext), i.e., k}, = k;, if it has not been updated (for example, at level one, we
always have k{ = k;,.

We then define a sequence of hybrid games of I'"** which we denote by Ffe“l, where [ =
0,1,---,q. Then the main difference between I'** and Flreal is in the above special event when B
is supposed to send Eys (I]),t=1,---,¢.In rreal B sends Ejy (rdj,) for allt =1, -, q. However,

tt tt

in [T B sends Ejy (rdj,) for 1 < t < [ and he sends Ej, (I,) for I < t < ¢. Furthermore, to
it it
enable him to do this, B will receive I, for all S,, € S;,, together with all k], satisfying S, C S;,

T
and I, € C(I;). Note that I = %! And I7°! is the game where B actually know C'(I}). Since
Fge“l actually does not relate to ¢, we simply write it as I'"*%’ In the following, we show that the
probabilities of non-abort events in " and I'"*a! are negligibly close. If this were not true, we
show that there exists an adversary D that can compromise the key assignment indistinguishability
of C'(I;) for some j. The action of D can be described as follows.

1. D chooses j from {1,---, z} uniformly and then he selects [ uniformly from {1,---, v}, where v
is the upperbound of ¢. If [ > ¢, then D exits with 1 or 0 equally likely; otherwise, D announces
ki as his target. As a response, he will receive all I,, € C(I;) for all S,, Z S; as well as
ay € {kl,, rw} for Sy, C S;,, where all are taken from the first component or all are taken from
the second componenet and the probability is 1/2.

2. D follows the decription of Fff‘f’ except when reaching the special case d’ = d for the first time.
In this case, if required to send Ekgl (15,), D sends Eq, (I}) or Eq; (rd;) with probability 1/2 if
|Si,| > 1; he sends Eq, (rd;,) if 5| = 1.

3. If D does not abort, the in case he sent Ea;, (I]’j) in the exception he outputs 1; in case he sent

Eq; (rdj,) in the exception, he outputs 0. If D does abort, then in case he sent Eq, (I} ) in the
exception, he outputs 0; in case he sent Ea;, (rd;,) in the exception, he ouputs 1.

Now we calculate the advantage Adv(D) of D. Let p}(j) be the non-abort probability in game
Ffe“l, for a fixed j. Also define p?(j) be the non-abort probability for a fixed j in the avariant game
of I7¢¥ where in the special case k;, is replaced by r;, for all t satisying S;, C S; and I;, € C(I;).



Define [; to be the number ¢ such that [S;,| = 1 but |S;,,,| > 1 for a fixed choice j. Then we have

z 0 ()10 () z 11 () +1=p; (4)
Adv(D) = 535 My gy A - DY Y e

= 52 L= [(02,(5) = p5() = (p1,(7) = pg(1))]
R gt =1 (0] () = pg (7))

~ ZI—V(PI’[NOH — abort ([’Teal’)] _ PI’[Non _ abort (Ivreal)]‘

Here the first ~ holds since p?j (7) ~ pg (7), which can be proved using standard argument to reduce

the pre-CCA security of E; the second & holds since p}(j) ~ p}l RS p}ll, which can be proved
J

by noticing the following facts :

<18, =1fort = 1,1

- If there exists two adjacent probabilities p}(j) and ptl_l_1 with a non-negligible gap, then one can
easily compromise the indistinguishability of k;,,, with a non-negligible gap, which can be done
by noticing that the rekeying ciphertexts here can be simulated in both of these two games.

Thus we have D has a non-negligible advantage, contradiction to the assumption of the key assign-
ment indistinguishability of C'(I;) for all j =1,---, 2.

Consider a variant I'"@” of game rreal’ For case d’ = d at Step 4, suppose that in game [real”
instead of abortion, B responses faithfully. He can do this because he knows C’(I]‘). The rest of the
action is unchanged (although B can compute k; already, we consider the case B still follows its
described action. Our point is A can realize whether B is normal or not). We show that B aborts in
rrea” if and only if it aborts in game rrea” Suppose z is a transcript in I"°*’ in which B aborts
at Step 4 and 2/ is the transcript in I'"*?” with prefix being x while instead of abortion at Step 4 B
continues his action described above. If B won’t abort in z’, then when A announces for a test by
providing (M, R), d’' = d since if d’ > d then B will abort at Step 3. It follows that u is not revoked
(i.e., currently he is a privileged user). Since we assume that A is a valid attacker, it follows that u ¢
R. Thus for any subset cover S;, US;,U---US; = U\R, there exists no ¢ such that ¢, = j. Therefore,
B must abort, a contradiction. Thus Pr[Non — abort(I"**)] = Pr[Non — abort (I"*")].

Now we consider Pr[Non — abort (I"*?")]. Let IT**"(D) denote the set of the views of adver-
sary A in the real world (i.e. in Defintion 5) with restriction that the number of requests of rekeying
algorithm on revoking set R’ with R' N S(I;) # (0 is D. Note that the view of adversary A in Step
1-5 in game """ before his abortion is distributed exactly the same as in the real world since
B’s action is according to the real world. If instead of abortion when d’ > d at Step 3, B continues
the normal action as described in the real world, the adversary view in Step 1-5 will be distributed
exactly the same as in the real world. It follows that given d chosen by B, if B won’t abort in Step
1-5, the view of A during Step 1-5 is distributed exactly the same as in the real world conditional
on D < d, where D is the number defined before. And therefore, the non-abort probability in Step
1-5 in game I is Y, Pr[IT""Y(D)], where Pr[ ] is according to distribution of the view of
adversary A in the real world.

Furthermore, in Step 6, since A is assumed to be valid, it follows that if B won’t abort till B
receives A’s test query (M, R), the adversary view of A is distributed the same as in the real world
conditional on D < d. And since at this point B won’t abort if and only if ¢, = j and d’' = d, it
follows that conditional on that B won’t abort, the adversary view till just before he reads the test
ciphertext is distributed the same as « € I1}%2"!(d) in the real world, where IT*?"!(d) is the subset

i=j 1=



of IT°"(d) with the restriction i; = j. Thus given ¢, we have

Pr[Non — abort(F”e“l”)] = % Z()};é w€IT»or(d) Prli; = j, 2]
% anorl Pr[it — j7 w]

= Pri; = j]
.
2\
where IT%"'= U}Z} IT*°"!(d). Therefore, we have Pr[Non — abort ()] = L. O

Lemma 7. Pr[Non — abort(I'"*")] is negligibly close to Pr[Non — abort(I'"*")].

Proof If the conclusion were not true, by using adversary B, we show that there would exist 7 such
that key assignment C'(I;) does not satisfy key indistinguishability. We denote such an attacker by
O. He acts as follows.

1. O runs algorithm adversary B described in game I,

2. When B chooses j, O announces to have a test on .S;. As a response, he will receive all I; for I; €
C(I;) with S¢ € S; as well as {a;,, o, , -+, a5, ) taken from {(k; , ki, -+, ki, ) or (ro,ri,---,7n)
uniformly random. Here r; is uniformly random of length |k;,| and k;, is the key associated
with S;,, where ¢ = j and S;,,---,5;, are all proper subsets of S; with I;,, € C(I;),t =
1,--+,h. Then O forwards all such information except «;, to adversary B. Then O answers the
encryption/decryption queries of B by using «;,.

3. If B does not abort, then O outputs 1 with probability o -I—p , where p1= Pr[Non — abort (I7"4)]
and py=Pr[Non — abort (I'"**)]. Otherwise, it outputs 1 with probability

P1 +p2

Now we analyze the probabilities. Note that if {a;,, o, -+, ;) = (ki,, kij, - -+, ki, ), then the
game initiated by B is exactly I'"**. Thus the non-abort probability is exactly p,. On the other
hand, if (v, -+, a5, ) = (ro, - - -, r'n), the game initiated by B is distributed exactly the same as game
rrend Tet Adv(O) be the advantage of O in breaking the key indistinguishability of Cj, - - - Ch.
Then we have

AdV(O) = E ijl(Pr[O(rov 0 Thy Aj) =1:j]- PI’[O(k,’O, oy ki Aj ) ]])|

- ‘ [p1+p2p1 T pl;fp? (1 _pl)] N [p1+p2p2 + plzfm (1 _pz)] ‘

= 5z [Pt + P2 — pip2 — pip2 — p2 + )

pl-}—m (1 = p2)?
> %(Pl — p2)?.

Since p; — pg is non-negligible, it follows that Adv(O) is non-negligible, a contradiction to Lemma
2. O

Lemma 8. Suppose that key assignment on C(1;) for all j satisfies key indistinguishability, that F
is semantically secure, and that E is pre-CCA secure. If Hyb framework is insecure, then adversary
B has a non-negligible advantage in game I,

Proof We first prove that the output advantages in I and rrea’ are negligibly close.
If this were not true, then there exists adversary D that can compromise the key assignment



indistinguishability of C'(I;) for some j. The action is similar to that in Lemma 6. The only difference
is the output. In the special case, if D sent Ej; (rdj,) then he follows the output rule of B in game
i)

Ireal. otherwise, he complements the output rule of B in game I (recall that in all variants of
<@ B has the same output rule). Immediately, we have that the advantage Adv(D) of D is as

follows.
realy_ real
AdV(D) — 27:1 Adv(f‘l )ZVAdV(I‘l—l )
_ Adv(Freal)_Adv(Freal/)

2v ’

non-negligible, contradiction.

Suppose a Hyb scheme is insecure. Let A be the algorithm that is against Hyb scheme. We can
separate A as (Ay, Az). The job of A; is to do the first part of the attack, which outputs (M, R) for
test and as well as some auxiliary information «, where R contains all the users that are corrupted
currently. And A; is the second part of A, which will receive the challenge ciphertext H(M’, R)
from the challenger and auxiliary information « from A;, where M’ = M or a random number of
length | M| equally likely. Then A, outputs a guess bit for M.

Define

H;(M,R) = (i1, -+, im, Eg; (r1), -, By, (rj)7Ekij+l (k),---, By

i

i (F), F1(M)) (10)
to be a random variable over the distribution of R and its internal coins, where R is the output of
A IE 5> m, let Hj(M,R) = H, (M, R).

Define

€j = Pr[Ax(H;(M,R), o) = 1 for o, M, R < A;] — Pr[Ay(H;(M",R), ) = 1 for o, M, R + A4],

where M" is a random string of length |M|,j = 0,---,Q. Here @ is an upperbound of m. Note
that ¢ is exactly the advatage of A in security definition of Hyb scheme. Thus it is non-negligible
according to the assumption. On the other hand, €g is negligible by the semantic security of F' and
the fact that k£ happened to occur somewhere else during the attack only with negligible probability
(since it is uniformly random).

Now let us analyze the advantage of B in game rrea’ For simplicity, we also separate B into
two parts (By,Bz). The job of By is to output k for test and some auxiliary information 5. On
receiving the challenge ciphertext v € {Ey;(k), Ex;(r;)} and 3, the job of B; is to output a guess
bit.

From the proof of Lemma 6, we know that for given d,t, j, if B won’t abort, then the view of
adversary A in case “y € Ey; (k)" is distributed exactly the same as in the real world conditional on
the set of events Hffi’;l(d) except that the challenge ciphertext H(M’, R) is replaced by H;_1(M’, R).
Note that H(M’, R) is one-one correspondent to a set {H¢—1 (M’ R)|r1, -+, ri—1}, where the random
bits used in H,_1(M’, R) for given ry,---r;_; are the same as in H(M’, R). Thus, for any such a
view 2 in the real world, let T,_;(z) be the set of views in I"*® that corresponds to 2 with
parameter ¢ such that Ey, (k) is contained in the challenge instead of Ej, (r:). Then the probability
that there exists an occurence of view in T;_; () conditional on fixed d, ¢, j and non-abortion event

is 7Pr[]%2[§;]?(d)]‘ Note Pf[ﬂffi’;l(d)] = ernwm’l(d) Prli; = j, z].

Define Ay (t, j, d)=Pr[Ba(Ey;(k), 8) = 1 for k, 3 < By|d,t, j] to be the probability that B out-
puts bit 1 conditional on non-abortion event and fixed d, j,t in Step 1 of the game. Similarly, define

AZ(tvjv d):Pr[BZ(Ekj(rt)vﬁ) =1 for kvﬁ — Bl|d7t7j]'



We have

Ai(t,d) = Toerreriao) P[;wi[](d)] Pr[Ay(2' € Ty_y(z)) = 1: 2]

+ Lyemperia ﬁ% Pr{Az(y' € Ti-1(y)) = 0 : y],

where H;fi’;l(d, a) denotes the subset of Hffi’;l(d) such that if M is used in the challenge ciphertext
then a = 0; otherwise, a = 1.

Similarly,

Aa(t, 5. d) = Toerruerian) P[;’wi[](d)] Pr[Ay (2 € Ty(z)) = 1: 2]
+ Lyemperia) ﬁ% PrlAs(y € Ti(y)) = 0 : yl.

Notice that when B aborts, he will output 0 or 1 uniformly random. Thus the advantage of
B comes from non-abort event only. Also notice that Pr[ﬂffi’;l(d, a)] = Pr[ﬂffi’;l(d)]/z Thus the
advantage Adv(B) of B is exactly the following

Adv(B) = Z Prt, j,d](AL(t, j, d) — Aq(t, §,d)) Pr[ITer (d)]/2. (11)
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We further have

+ 3t 5a Prlts g, d) Xye rpworia,ny Priyl PrlA2 (y' € Ti—1(y)) = 0 2 y]/2
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= 2jaPrlt, g, d] Zyenjwzo;tl(dJ) Prly] Pr[Ax(y' € Ti(y)) = 0 : y]/2

= 30% Ljtd erﬂj“;,»’;l(d,o) Prlz] PrlAy (2’ € Ty—1(2)) =1 : 2]
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For a fixed t, any = € II"** has a unique j such that j = ¢; ( recall i; is defined as i,, if t > m).
Thus Ujﬂ;*’zoi’;l(d, 0) is the subset of IT**"!(d) in which M is used in the challenge ciphertext for A.

Denote the union by IT*°"!(d,0). Furthermore, subsets in this union are pairwise disjoint. Similar
observations are applied to other three cases. Thus we have

Adv(B) = mﬁ Yotd Lwcrvoriao) P[] PrlAz (2" € Ti1(2)) = 1 : 2]

]
‘|‘2Q% Yot 2oyermeridn) Prlyl PrlAs(y' € Ti—i(y)) = 01 y]
—ﬁ Yotd werreoriao) Pr[z] PrlAz (2f € Ty(z)) = 1: 2]
—ﬁ Yotd Lyermworia) Prly] PrlA2 (v € Ti(y)) = 0 : y]



Further notice that any z € II*°"! has a unique D. Thus
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where 1T (a) = UaIT**"!(d, a) for a € {0,1}. Note that IT%°"(0) N IT*°"!(1) = § and IT*°"*(0)
(resp. IT"?"!(1)) is the subset of IT*°"" such that M (resp. M") is used in the challenge ciphertext.
Therefore,

Adv(B) = 5255 Ty (1 — €0)

= —221Q>\(60 —€Q).

Thus B has a non-negligible advantage. O

Lemma 9. If adversary B in game I'"% has a negligible advantage while it has a non-negligible
advantage in game I then there exists an adversary D that compromises the key assignment
indistinguishability of Hyb.

Proof The action of D is the same as O in Lemma 7 except the output. Here D does the following:

1. If B aborts, then D outputs 0, 1 equally likely.
2. If B does not aborts and outputs 1, then D outputs 1 with probability pp%' if B won’t

p realTPrand’
4 .
prealﬁZmnd’ where Dreal (resp. prand) 1S

the probability B outputs 1 in game I (resp. F””d) which is not due to abortion event.

abort and outputs 0, then D outputs 1 with probability

For c¢h € {real,rand}, let II" denote the set of views of A in game I'*" with the abortion of
B and II" denote the set of views of A in game I'" with non-abortion of B. For simplicity, let
D = (D1,D;), where the job of D; is to output j and the job of Dj is to do the rest job. Then we



have

Adv(D) = |Pt[Dy(ro, - -+, rn, Aj) = 1 for j < D] — Pr[Dy(kiy, - -+, ki), Aj) = 1 for j < D4

in
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where &~ means “negligibly close” and Adeh(B) is the advantage of B in game I'°", for ch €
{real,rand}. Therefore, Adv(D) is non-negligible. O

Proof of Theorem 1 The theorem directly follows from Lemmas 7, 8 and 9. O



