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Abstract. We propose a cryptanalysis of the original Domingo-Ferrer’s alge-
braic privacy homomorphism. We show that the scheme over Z,, can be broken by
d + 1 known plaintexts in O(d®log®n) time when it has d times expansion through
the encryption. Furthermore even when the public modulus n is kept secret, it can
be broken by d 4 2 known plaintexts in time at most O(d°log?(dn)).
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1 Introduction

Recently, rapid advances in networking and internet have introduced Application
Service Provider (ASP) as a new e-business model. Software as a service includes
rent-a-spreadsheet, electronic mail services, general storage services, disaster pro-
tection services, database as a service, etc. In the ASP model including a database
service model, there are two main privacy issues. First, the owner of the data needs
to be assured that the data stored on the service-provider site is protected against
data modification or eavesdropping from unauthorized outsiders. Second, data need
to be protected even from the service providers, if the providers themselves cannot
be completely trusted. The first requirement can be achieved by access control. But
the second one is not easy to be satisfied by the similar technique.

The concept of processing encrypted data was firstly introduced by Rivest, Adle-
man, and Dertouzos [9] in 1978 in order to resolve the second problem. They pro-
posed several privacy homomorphisms to process encrypted data without decrypt-
ing. A privacy homomorphism is an encryption function which allows processing the
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encrypted data without knowledge of the decryption function. Further, an algebraic
privacy homomorphic encryption £ over a ring R is an encryption function which
has efficient algorithms to compute £(zy) and £(x +y) from E(x) and E(y) without
revealing « and y. One example of an algebraic privacy homomorphism [9] is as
follows:

EXAMPLE 1. Let p, q be large primes, and n = pq.
P="2Zn, C=7Zy,xZy &E(z)=(xmodp,zmodq)
and decryption is done using the Chinese remainder theorem.

Apparently, this function is an algebraic privacy homomorphism under the usual
modular addition and modular multiplication. Unfortunately, it is shown in [4] that
this algebraic privacy homomorphism can be broken using a known-plaintext attack.

In 1991, Feigenbaum and Merritt [8] questioned directly whether an algebraic
privacy homomorphism does exist. In spite of numerous studies over twenty five
years, little progress has been made in deciding whether or not an algebraic privacy
homomorphism exists. Neither promising candidates for such schemes nor evidence
that such schemes exist has been found. Many suggested examples and schemes are
shown to be insecure [4, 2, 12]. Ahituv et al. showed that any algebraic privacy
homomorphism can be broken efficiently by chosen ciphertext attacks [1]. Boneh and
Lipton proved that any deterministic algebraic privacy homomorphism over rings
Z,, can be broken in sub-exponential time under a (reasonable) number theoretic
assumption [3].

Domingo-Ferrer proposed two algebraic privacy homomorphisms in 1996 and
2002 [6, 7]. The second one is broken by Wagner and Bao [12, 2]. But there is no
serious attack on the first scheme. It is the only algebraic privacy homomorphism
that remains secure to the authors’ best knowledge. In this paper, we analyze the
original privacy homomorphism of Domingo-Ferrer [6], and show that it is not secure
against known-plaintext attacks. More precisely, when we consider an encryption
function from Z,, to (Z, x Zq)d for n = pgq, it can be broken by d + 1 plaintext-
ciphertext pairs in O(d®log?n). Even when n is kept secret, it can be broken by
one more pairs in O(d®log(dn)) with almost 1 probability. It means that one can
increase the security by increasing d. However, the efficiency decreases as d increases.
Moreover, if we want a scheme which is secure against at most d ciphertext, linear
transformation are better in efficiency aspects.

The outline of the paper is as follows: In Section 2, we introduce the original
scheme. In Section 3, we propose its attack using d+ 1 known plaintexts. In Section
4, we propose the attack of the Domingo-Ferrer scheme when the public modulus is
kept secret. This condition was proposed by the author to increase the security and
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reduce the efficiency. But we show that this enhanced version also can be broken
by one more known plaintext than the original version with very high probability.
We conclude in Section 5.

2 Domingo-Ferrer algebraic privacy homomorphism

Let me introduce the original Domingo-Ferrer scheme [6].

The Domingo-Ferrer scheme

Let p, g be large primes with p < ¢, and n = pq. For a positive integer d, we set
P =12, C=(Z,xZ,)"~

1. Public Parameter d and n. n can be kept secret to increase the security at
the sacrifice of the efficiency.

2. Secret key p,q and randomly chosen integer r, € Z; and r, € Zj, each of
which generates a large multiplicative subgroup of Z;, and Z7, respectively.

3. Encryption Randomly split « € Z,, into secret x1, x2, ... x4 such that

d
T = Zmz modn and =xz; € Z,.
i=1

E(xz) = ([z1rpmodp,zirymodg], [.%27“]2) mod p, xgrg modg],. ..,

[:rdrpd mod p, xdrqd mod q])

4. Decryption Compute the scalar product of the j-th [modp, modg| pair by
[, mod p, 477 mod g| to retrieve the [z; modp,z;modg|. Add them up to
get [z mod p, z mod ¢g|. Use the Chinese remainder theorem to get z modn.

Domingo-Ferrer’s scheme is an algebraic privacy homomorphism with respect
to the operation of addition and multiplication in Z, and encrypted values are
computed over (Z,, x Z,)?. Note that if d =1, r, = 1, and r, = 1, then Domingo-
Ferrer’s algebraic privacy homomorphism scheme is the same with Example 1.

Domingo-Ferrer claims that his scheme has the following improvements from
Example 1.

B Small values are nontrivially encrypted while the small value plaintext is the
same with ciphertext component in Example 1.

B It is able to withstand a known-plaintext attack.

We will show that the second assertion is false.



3 SECURITY ANALYSIS OF DOMINGO-FERRER’S SYSTEM 4

3 Security analysis of Domingo-Ferrer’s system

Let = € Z,, be a plaintext such that

r=x1+ 22+ ... 2gmodn (1)
and
E(x) = ([zirpmodp,zirymodygl,..., [mdrpd mod p, y:drqd mod q])
= ([yla Zl]a [y27 22]’ B [ydv Zd])-

We denote &y(z) = (y1,...,yq) and &(z) = (21,...,24). For a subset S of Zj,
if {(z,&(x))|x € S} and {(z,Ey(z))|z € S} are linearly independent as a module
elements of Z4+! over Z, then we say that {(x,&(z)|z € S} is linearly independent
over Zny,.

LEMMA 2. Let k < d + 1. Given randomly chosen k plaintexrt-ciphertext pairs
(M;,C;) fori=1,...,k, the probability that the set {(M;,C;)|i = 1,...,k} is lin-
4

early independent is more than e p—1.

Proof. Note that

Prob{(Mi,Ch),..., (M, Cy) are linearly independent over Zj,}
™ =)™ - p) ™ —p?) - (™ M)

(derl)k
1 1 1
= ]ﬁ)(l ﬁ) (1 pd—kﬂ)
1 1 1 1
> (1 pdﬂ)(l—ﬁ)' (1 pd_kﬂ) '(1—];)
11,1
2 2( d+1+pd+ p) ( 1_$>€ QI’OSxSé)
__2
> e p-L,

When we assume p < g,

Prob{
= Prob{

2 4

> e p-le a1 >¢ p-1,

M, Cy),. .., (M, Cy) are linearly independent over Z, }
M, Ch),. .., (My, Cy) are linearly independent over Z, and Z,}

(
(
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Note that if (My,C4),..., (M, C) are linearly dependent over Z,, one of the
pairs, for example (M;, C;), can be computed by a linear combination of the others.
That means that if we have all the other pairs, we can decrypt C; to get M;. The
converse is true in the sense that one pair can be used to generate many linearly
dependent pairs. Thus it is reasonable to discard linearly dependent pairs over Z,,.

Preparation
Assume we have a plaintext-ciphertext pair (x, ([y1, z1], - - -, [yd, 24])) where z = 1+
To+---+xgmodn, y; = r;a:i modp and z; = réa:i mod ¢q. Since p divides n, we have

T =1+ 22+ -+ xgmodp. (2)

By replacing y; = r;?xi mod p in (2), we obtain

—x 4yt +yot? + -+ ygt? = 0mod p (3)

where t = 7";1 mod p.

Using the equation (3), we will show that this system can be broken by a known-
plaintext attack. In Section 3.1, we deal with the case that the modulus n is public,
and in Section 3.2 we deal with the case that the modulus n is kept secret.

3.1 The case that n is public

Assume that a cryptanalyst has d+1 linearly independent plaintext-ciphertext pairs
(Mi, Cz), 1= 1, 2, e ,d + 1 over Zn Let Cz = ([yﬂ, Zﬂ], [yiQ, ZiQ], ey [yida sz])

Step 1 Finding p, q

By applying the equation (3) to d + 1 pairs (M, C1), ..., (Mgi1,Cqr1), we get the
following d + 1 modular equations:

—M; + yit + yiot? + -+ yiat? =0 modp,
~Msy + y:t + y2t® + -+ yagt? =0 modp,

— M1 +Yarit+yariot®+ - +yar1at?=0 mod p.

This can be transformed into the following matrix form:

My Y11 Y12 Yid -1 0
My Y21 Y22t Yad t 0

mod p. (5)

May1 Yar1n Yar12 o Ydiid td 0
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Since the homogeneous equation (5) has a nontrivial solution in Zpd, the coeffi-
cient matrix

M,y Y11 Y12 Yid
2 Y21 Y22 Y2d
A= (M|C) = .
May1 Yar1r Yar12 0 Ydiid

has det(A) = Omodp. If d + 1 pairs (M;,C;) are linearly independent, we have
det(A) # 0mod n. Therefore ged(det(A) modn,n) = p. ¢ is obtained from g = n/p.

Step 2 Finding r,, 7y

Once p, ¢ are known, 7,7, can be computed by solving the system of linear equa-
tions (5) over Z,. Hence the solution can be found in O(d® log? p) using Gaussian
elimination.

JFrom Step 1 and Step 2, we can compute all secret keys using d + 1 linearly in-
dependent plaintext-ciphertext pairs. Further the probability that randomly chosen
k pairs are linearly dependent is very large. More precisely, we obtain the following
theorem.

THEOREM 3. Domingo-Ferrer’s algebraic privacy homomorphism with public mod-

ulus can be broken by linearly independent d + 1 known plaintext-ciphertext pairs

in time O(d> log? n). Further randomly chosen d + 1 plaintext-ciphertext pairs are
4

linearly independent with the probability larger than er1.

Remark that 7, can be computed from the equation (4). Finding a root for a
polynomial of degree d in Z, takes O(d? log dlog? p) using Berkelamp-Rabin algo-
rithm. If d is larger than log p, we may use this algorithm rather than Step 2.

3.2 The case that n is not public

Domingo-Ferrer suggested that his scheme could be a more secure scheme by hiding
the modulus n. In this case, however, we can not perform many multiplications
since one multiplication doubles up the length of ciphertexts. We will show that
even if n is not public, a similar cryptanalysis can be applied.

Let me assume we have d+ 2 known plaintext-ciphertext pairs which are linearly
independent over Z, not in Z,. From each d + 1 pairs, we can induce the (d 4 1) X
(d + 1) coefficient matrix A; for i = 1,2,...,d + 2 as in the equation (5).

Computing the determinant of an integer matrix takes an exponential time using
an ordinary Gaussian algorithm. Thus we need a special method as follows:
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1. Estimate the bound R by R = max{yij, zij}-
2. det A; is bounded by M = (d + 1)!R%*! from the determinant formula.

3. If we compute det(A; mod M), it is the same with det A; since it is smaller
than M.

Then ged(det(A), det(As), det(As), ..., det(Ag)) where 2 < k < d+ 2 will be p
with high probability because the probability of

ged(det(Ar)/p, det(A2)/p, det(As)/p, ..., det(Ag)/p) =1

can be estimated approximately ﬁ More precisely, we have

LEMMA 4. Assume that divisibility of an integer by different primes is independent.
Let N be a positive integer. If positive integers nq,...,n, are randomly drawn from
the interval (0, N), then the probability Py(d) of the greatest common divisor of k
integers ny, ..., ng is equal d,

1
Py(d) = ]\}Enoo Pr{gcd(ni,na,...ng) =d} = )
where ((k) is Riemann’s zeta function.!
Proof. See [11, Section 4.4]. O

If ¢ = ged(det(Ay), det(Asz), det(As),. .., det(Ag)) is not prime and ¢ has only
small factors other than p, then we can easily calculate p by trial divisions or some
integer factoring algorithms. Using Lemma 4, we obtain that the probability for
finding find p is

d=1 d=1 d:l d=m

for m = ¢/p. This value approaches 1 as m increases and is enough close to 1 even
for m = 239,

We can find ¢ by the same method. After getting p, ¢, we can compute the other
secret keys rp,, 7, by the same method with the case that n is known.

!The approximate value of C( for k =2,4,6,8,10 is

k)

6079271016, .9239384016, .9829525910, .9959391987, .9990064106
by using the Euler’s formula
m+1 (277)2n

2(20) = (1) B

where Ba,, is the Bernoulli numbers.
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THEOREM 5. Domingo-Ferrer’s algebraic privacy homomorphism with secret modu-
lus can be broken by d+ 2 known plaintext-ciphertext pairs which have two linearly
independent subsets of d + 1 plaintext-ciphertext pairs in time O(d° log?(dn) + ¢)
where € depends on a suitable factorization algorithm and the probability of success
is approzimately 1(~ =5 (352, d—IQ)) Further the probability that random d + 2

¢(2)
plaintext-ciphertext pairs have two linearly independent d + 1 plaintext-ciphertext

—4
pairs is approximately larger than (er—1)2.

Proof. Assume we use only two matrices to save time for computing determinants
in Z. The computing time of det(A) in Z is estimated as follows: Take a prime
M =~ (d+ 1)!In% < ((d + 1)n)*! so that | det(A)| < M. Compute det(Amod M)
using Gaussian elimination. So the complexity is O((d 4 1) log® M) bit operations,
which is approximately O((d 4 1)®log? ((d + 1)n)). Next, using a suitable factor-
ization algorithm (whose complexity is ), we can compute p. The complexity of
computing 7, and r, is the same with the known n case and so O(d® log? n). The total
complexity is O(d® log?(dn) + €) And the probability that random d + 2 plaintext-
ciphertext pairs have two linearly independent d + 1 plaintext-ciphertext pairs ap-
proximately larger (erfl)2, and the probability of finding p from the ged(A1, Az) is
approximately 1 by the above explanation 1 — ﬁ(zgim d—lz) ~1if m>210 O

’ Case ‘ n is known ‘ n is unknown
# of known plaintexts d+1 d+2
The condition of linearly two subsets with d + 1 elements
plaintext-ciphertext pairs | independent are linearly independent
The probability > e 1 gep;—sl
of the above condition
Time O(d®log®n) O(d° log®(dn) + ¢)
Probability of success 1 ~1

Table 1: The Complexity of the Proposed Attacks

3.3 Baby example

This example is in the paper of Domingo-Ferrer [6]. We illustrate the above analysis
by this example. Let p = 17, ¢ = 13, 7, = 2, and r, = 3 be secret key. We can
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encrypt —1,3,1, and 2 as follows:

Ex(—1) = &(2,-3) = ([4,6],[5,12)
Ee(3) = &(2,1) = ([4,6],[4,9])
E(1) = &(4,-3) = (1,12],[5,12)
Ek(2) = &(3, 1) = ([6?9]7[13’4])

We use three plaintext-ciphertext pairs, for example plaintext (—1,3,1) then the
matrix

1 4 5
A= 3 4 4|, det(4) =68, ged(det(A),13 %14 = 221) = 17.
1 8 5

If n = 221 is unknown, we use above A and use one more plaintext-ciphertext pair
and make a matrix for plaintext (—1,3,2),

—1

4 5
B = 3 4 4 |, det(B)=-102, gcd(det(A),det(B)) = 34
2 6 13

—_

We next calculate 7, by using 1+ 4t + 5t = 0,—3 + 4t + 4t> = 0 then by
elimination —19 + 4t = 0mod 17 so ¢t = 9mod 17,7, = t~1mod 17 = 2.

4 Conclusion and Open problems

We conclude this section by summarize Domingo-Ferrer’s algebraic privacy homo-
morphism.

1. Addition, substraction, multiplication and division can be carried out on en-
crypted data by simple integer operations without decrypting.

2. A given plaintext can be encrypted into many ciphertext versions by using a
padding function from Z, to ZZ.

3. A ciphertext is about d times longer than the corresponding plaintext. If d is
large then the storage leakage is inevitable.

4. It can be efficiently broken by d + 1 plaintext-ciphertext pairs.

If we have at most d pairs, Domingo-Ferrer’s scheme seems to be secure. But in
this case, we might have more efficient scheme using linear transformations rather
than the nonlinear transformation.
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