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Abstract

Security against adaptive chosen ciphertext attacks (or, CCA security) has been accepted
as the standard requirement from encryption schemes that need to withstand active attacks.
In particular, it is regarded as the appropriate security notion for encryption schemes used as
components within general protocols and applications. Indeed, CCA security was shown to
suffice in a large variety of contexts. However, CCA security often appears to be somewhat too
strong: there exist encryption schemes (some of which come up naturally in practice) that are
not CCA secure, but seem sufficiently secure “for most practical purposes.”

We propose a relaxed variant of CCA security, called Replayable CCA (RCCA) security. RCCA
security accepts as secure the non-CCA (yet arguably secure) schemes mentioned above; further-
more, it suffices for most existing applications of CCA security. We provide three formulations
of RCCA security. The first one follows the spirit of semantic security and is formulated via
an ideal functionality in the universally composable security framework. The other two are
formulated following the indistinguishability and non-malleability approaches, respectively. We
show that the three formulations are equivalent in most interesting cases.
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1 Introduction

One of the main goals of cryptography is to develop mathematical notions of security that ade-
quately capture our intuition for the security requirements from cryptographic tasks. Such notions
are then used to assess the security of protocols and schemes. They also provide abstractions that,
when formulated and used correctly, greatly facilitate the design and analysis of cryptographic
applications.

With respect to encryption schemes, a first step was taken with the introduction of semantic
security of (public key) encryption schemes in [15]. This first step is indeed a giant one, as it
introduces the basic definitional approach and techniques that underlie practically all subsequent
notions of security, for encryption as well as many other cryptographic primitives.

However, semantic security under chosen-plaintext attacks as defined in [15] captures only the
very basic requirement from an encryption scheme, namely secrecy against “passive” eavesdroppers.
In contrast, when an encryption scheme is used as a component within a larger protocol or system,
a much wider array of attacks against the scheme are possible. Specifically, adversaries may have
control over the messages that are being encrypted, but may also have control over the ciphertexts
being delivered and decrypted. This opens new ways for the attacker to infer the outcome of the
decryption of some ciphertexts by observing the system (see e.g. [6, 18]).

Several notions of “security against active adversaries” were proposed over the years in order
to capture such often subtle security concerns. These notions include semantic security against
Lunchtime Attacks (or, IND-CCA1 security), semantic security against Adaptive Chosen Cipher-
text Attacks (or, IND-CCA2 security), Non-Malleability against the above attacks, and more
[20, 22, 11, 3]. In particular, CCA2 security (where the semantic-security and the non-malleability
formulations are equivalent) became the “golden standard” for security of encryption schemes in
a general protocol setting. Indeed, CCA2 security (or simply CCA security) was demonstrated to
suffice for a number of central applications, such as authentication and key exchange [11, 2, 9],
encrypted password authentication [16], and non-interactive message transmission [7]. In addition,
in [7] CCA is shown to suffice for realizing an “ideal public-key encryption functionality” within
the universally composable security (UC) framework, thus demonstrating its general composability
properties.

CCA security is indeed a very strong and useful notion. But is it necessary for an encryption
scheme to be CCA-secure in order to be adequate for use within general protocol settings? Some
evidence that this may not be the case has been known all along: Take any CCA-secure encryption
scheme S, and change it into a scheme S′ that is identical to S except that the encryption algorithm
appends a 0 to the ciphertext, and the decryption algorithm discards the last bit of the ciphertext
before decrypting. It is easy to see that S′ is no longer CCA-secure, since by flipping the last bit of
a ciphertext one obtains a different ciphertext that decrypts to the same value as the original one,
and this “slackness” is prohibited by CCA security. But it seems that this added slackness of S′

is of no “real consequence” in most situations. In other words, S′ appears to be just as secure as
S for most practical purposes. This example may seem contrived, but it in fact turns up, in thin
disguises, in a number of very natural settings. (Consider for instance an implementation of some
CCA-secure scheme, where for wider interoperability the decryption algorithm accepts ciphertexts
represented both in big-endian and in little-endian encodings.) To give another example of a
slightly different nature, consider the scheme S′′ that is identical to S except that it re-encrypts
the ciphertext generated by S using another encryption scheme which is only guaranteed to be
secure against chosen plaintext attacks. As with S′, we have that S′′ is not necessarily CCA-secure,
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but it seems that the extra slackness is of little consequence in most situations. In fact, some
relaxations of CCA-security were already proposed in the literature, e.g. [19, 18, 23, 1]. However,
while being good first steps, these notions were not fully justified as either sufficient or necessary
for applications. (In particular, these notions capture S′, but do not capture S′′.)

We propose a new relaxed version of CCA-security, called Replayable CCA (RCCA) security. In
essence, RCCA is aimed at capturing encryption schemes that are CCA secure “except that they
allow anyone to generate new ciphertexts that decrypt to the same value as a given ciphertext.”
RCCA is strictly weaker than CCA security. In fact, it is strictly weaker than the relaxations
in [18, 23, 1]. The rationale behind RCCA is that as far as an attacker in a protocol setting is
concerned, generating different ciphertexts that decrypt to the same plaintext as a given ciphertext
has the same effect as copying (or, “replaying”) the same ciphertext multiple times. Since replaying
a ciphertext multiple times is unavoidable even for CCA secure encryptions, RCCA security would
have “essentially the same effect” as CCA security.

To substantiate this intuition, we prove that RCCA security suffices for all of the above major
applications of CCA secure encryption (authentication, key exchange, etc.). We also demonstrate
that the hybrid encryption paradigm can be based on RCCA security rather than CCA security.
(Hybrid encryption calls for encrypting a key k using an asymmetric encryption and then encrypting
a long message using symmetric encryption with key k.)

It should be stressed that the above rationale holds only as long as the protocol that uses the
scheme makes its decisions based only on the outputs of the decryption algorithm, and does not
directly compare ciphertexts. Arguably, most applications of CCA secure encryption have this
property. However, in some applications it is natural and helpful to directly compare ciphertexts.
For instance, consider a voting scheme in which votes are encrypted, and illegal duplicate votes are
detected via direct ciphertext comparison. In such cases, the full power of CCA security is indeed
used.

We provide three formulations of RCCA security. The first two are formulated via “guessing
games” along the lines of CCA security. The first of these, called IND-RCCA, has the flavor of “secu-
rity by indistinguishability” (or, IND-CCA2 in the terminology of [3]) with a CCA-style game that
allows for plaintext replay. The second notion, called NM-RCCA, has the flavor of non-malleability
in a CCA-style game that allows for plaintext replay. The third notion, called UC-RCCA, is for-
mulated via an ideal functionality in the UC framework [7]. This ideal functionality, called Frpke,
is obtained by modifying the ideal functionality Fpke in [7] to explicitly allow the environment to
generate ciphertexts that decrypt to the same value as a given ciphertext. Having been formulated
in the UC framework, this notion provides strong and general composability guarantees. Further-
more, in the spirit of semantic security, it provides a clear and explicit formalization of the provided
security guarantee. It also explicitly demonstrates the exact sense in which RCCA weakens CCA.1

We show that, when applied to encryption schemes where the message domain is “large” (i.e.,
super-polynomial in the security parameter), the three notions are equivalent.2 When the message
domain is polynomial in size, we have that UC-RCCA implies NM-RCCA, and NM-RCCA implies
IND-RCCA. We also show, via a separating example, that in this case IND-RCCA does not imply

1Krohn in [19] studies various relaxations of CCA security and their respective strengths. One of these notions is
essentially the same as IND-RCCA security. However, no concrete justification for this notion is provided.

2We say that an encryption scheme has message domain D if, for any message m ∈ D, the process of encrypting
m and then decrypting the resulting ciphertext returns m. Thus the larger the domain, the stronger the requirement.
(Encryption schemes with large message domain should not be confused with encryption schemes that guarantee
security only if the message is taken uniformly from a large domain. The latter is a weak notion of security, whereas
the former is only a correctness requirement, and can be used in conjunction with any security requirement.)
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NM-RCCA. Whether NM-RCCA implies UC-RCCA for polynomial message domains remains open.
For schemes that handle large message domains, having the three equivalent formalizations

allows us to enjoy the best of each one: We have the intuitive appeal and strong composability of
the UC-RCCA, together with the relative simplicity of NM-RCCA and IND-RCCA. Indeed, the
case of large message domains is arguably the most interesting one, since most existing encryption
schemes are either directly constructed for large message domains, or can be extended to deal with
large domains in a natural way. Also, most applications of public-key encryption, e.g. encrypting
an identity or a key for symmetric encryption, require dealing with large message domains.

The three notions in a nutshell. Let us briefly sketch the three notions. See Section 3 for more
detailed description and rationale. First recall the standard (indistinguishability based) formulation
of CCA security for public-key cryptosystems. Let S = (gen, enc, dec) be a public-key encryption
scheme where gen is the key generation algorithm, enc is the encryption algorithm, and dec is the
decryption algorithm. Informally, S is said to be CCA secure if any feasible attacker A succeeds in
the following game with probability that is only negligibly more than one half . Algorithm gen is
run to generate an encryption key e and a decryption key d. A is given e and access to a decryption
oracle dec(d, ·). When A generates a pair m0,m1 of messages, a bit b

R← {0, 1} is chosen and A is
given c = enc(e,mb). From this point on, A may continue querying its decryption oracle, with the
exception that if A asks to decrypt the “test ciphertext” c, then A receives a special symbol test
instead of the decryption of c. A succeeds if it outputs b.

IND-RCCA is identical to CCA, with the exception that the decryption oracle answers test
whenever it is asked to decrypt any ciphertext that decrypts to either m0 or m1, even if this
ciphertext is different than the test ciphertext c. Indeed, in the IND-RCCA game the ability to
generate new ciphertexts that decrypt to the test ciphertext does not help the adversary. (Yet, it
is not immediately clear from this formulation that we did not weaken the security requirement
by too much. The justification for this notion comes mainly from its equivalence with UC-RCCA,
described below.)

NM-RCCA is identical to IND-RCCA, with the exception that A succeeds if m0 6= m1 and it
outputs a ciphertext c′ that decrypts to m1−b. Note that if we required A to output m1−b explicitly,
we would get a requirement that is only a reformulation of IND-RCCA. So the difference is in the
fact that here A is only required to output an encryption of m1−b, without necessarily being able to
output m1−b explicitly. This requirement has a flavor of non-malleability, thus the name. (Indeed,
it can be regarded as a non-malleability requirement in which the attacker is considered successful
as long as the “malleability relation” it uses is not the “equality relation.”)

UC-RCCA is defined via an ideal functionality, Frpke. To best understand Frpke, let us first
recall the “ideal public-key encryption” functionality, Fpke, from [7], that captures CCA security.3

In fact, instead of getting into the actual mechanism of Fpke (see Section 3), let us only sketch the
security guarantee it provides. Functionality Fpke captures the behavior of an “ideal encryption
service.” That is, Fpke provides an encryption interface that is available to all parties, and a
decryption interface that is available only to one privileged party, the decryptor. When querying
the encryption interface with some message m, a ciphertext c is returned. The value of c is chosen
by the adversary, without any knowledge of m. This guarantees “perfect secrecy” for encrypted
messages. When the decryption interface is queried with a “legitimate encryption of m” (i.e., with

3In [7] it is mistakenly claimed that CCA security is a strictly stronger requirement than realizing Fpke for non-
adaptive adversaries. However, as shown in this work, the two requirements are actually equivalent. The mistake in
[7] and the equivalence proof were independently discovered in [17].
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a string c that was the outcome of a request to encrypt m), then the returned value is m. Since
there is no requirement on how “illegitimate ciphertexts,” i.e. strings that were not generated using
the encryption interface, are being decrypted, Fpke allows the adversary to choose the decryption
values of these ciphertexts.

Functionality Frpke is identical to Fpke, except that it allows the adversary to request to decrypt
“illegitimate ciphertexts” to the same value as some previously generated legitimate ciphertext.
This directly captures the relaxation where the adversary is allowed to generate new ciphertexts
which decrypt to the same (unknown) value as existing ciphertexts. It also demonstrates that
RCCA does not weaken CCA-security beyond allowing for “plaintext replay” by the attacker.

Between RCCA security and CCA security. As sketched above, RCCA security allows
anyone to modify a given ciphertext c into a different ciphertext c′, as long as c and c′ decrypts
to the same message. One potential strengthening of RCCA security is to require that it will
be possible to detect, given two ciphertexts c and c′, whether one is a ”modified version” of the
other. (Indeed, the “endian changing” example given above has this additional property.) Here it
is natural to distinguish between schemes where the detection algorithm uses the secret decryption
key, and schemes where the detection can be done given only the public encryption key. We call such
schemes secretly detectable RCCA (sd-RCCA) and publicly detectable RCCA (pd-RCCA), respectively.

We first observe that pd-RCCA security is essentially equivalent to the notions proposed by
Krawczyk [18], Shoup [23], and An, Dodis and Rabin [1]. (The notions are called, respectively, loose
ciphertext-unforgeability, benign malleability, and generalized CCA security, and are essentially the
same.) Next we study the relations between these notions. It is easy to see that: CCA security
⇒ pd-RCCA security ⇒ sd-RCCA security ⇒ RCCA security. We show that the two leftmost
implications are strict. (The first is implied by the above “endian changing” example; the second
is obtained via constructing a scheme that is based on the above “double encryption” example.)
Whether sd-RCCA security is equivalent to RCCA security remains open.

Finally, we provide a generic construction that turns any RCCA secure scheme (with message
domain {0, 1}k where k is the security parameter) into a CCA scheme. The construction is quite
efficient, and uses only shared-key primitives. This in essence demonstrates that the existence of
an RCCA secure encryption scheme implies the existence of a CCA secure scheme without any
additional computational assumptions. Also, this construction may provide an alternative way of
obtaining CCA security.

Symmetric encryption. In this work we develop the RCCA notions mainly for public-key en-
cryption. However, the notion can be adapted to the symmetric-key setting in a straightforward
way. We outline this generalization in Section 5.4 where we use RCCA-secure symmetric encryption
to build RCCA-secure public-key hybrid encryption schemes.

Organization. Section 2 recalls the formulation of CCA security, and establishes its equivalence
with the universally composable notion of security for public-key encryption schemes (against non-
adaptive adversaries) as defined in [7]. Section 3 presents the three variants of RCCA security
and establishes the relationships among them. Section 4 studies the detectable variants of RCCA
security. It also shows how to turn any RCCA secure scheme into a CCA secure one. Section
5 demonstrates several central applications where RCCA security can be used instead of CCA
security.
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2 Prologue: On CCA security

Before introducing our RCCA definitions, we recall the formulation of CCA security. We also
demonstrate that the notion of secure public-key encryption in the universally composable frame-
work [7] is equivalent to CCA security. (In particular, this corrects the erroneous claim from [7]
that the UC characterization is strictly weaker than CCA security. The mistake in [7] and the
equivalence proof were discovered independently in [17].) This equivalence sets the stage for the
presentation of RCCA. In particular, by comparing the UC formalizations of CCA security and of
RCCA security it is easier to see that the technical relaxation from CCA to RCCA coincides with
the intuition behind the later notion as described above, namely, that “replayable CCA” is identical
to CCA except for the added ability of the attacker to generate new ciphertexts that decrypt to the
same plaintexts as previously seen ciphertexts. We start by establishing the basic formal setting
for public-key encryption schemes.

2.1 CCA secure encryption schemes

Public-key encryption schemes. Throughout the paper we model (public key) encryption
schemes as triples of probabilistic polynomial-time algorithms S = (gen, enc, dec) together with an
ensemble of finite domains (sets) D = {Dk}k∈N, Dk ⊂ {0, 1}∗ which can be recognized and sampled
in PPT (in k). Algorithm gen, on input k (k is a security parameter), generates a pair of keys
(e, d). The encryption and decryption algorithms, enc and dec, satisfy that if (e, d) = gen(k), then
for any message m ∈ Dk we have decd(ence(m)) = m except with negligible probability. The range
of the decryption function may include a special symbol invalid /∈ Dk,∀k.4

CCA security. We recall the definition of CCA security (or IND-CCA2) for public key encryption
schemes. See [22, 11, 3]. Let S = (gen, enc, dec) be an encryption scheme over domain D =
{Dk}k∈N. This definition, presented next, is based on the CCA game described in Figure 1.5

Definition 1 An encryption scheme S is said to be CCA-secure if any polynomial-time adversary
F wins the IND-CCA game of Figure 1 with probability that is at most negligibly more than one
half.

2.2 Equivalence of CCA and UC security of encryption schemes

A UC characterization of CCA security. Here we assume some familiarity of the reader with
the UC framework. See [7] for an overview and full details. Within the UC framework, public-
key encryption is defined via the public-key encryption functionality from [7], denoted Fpke and
presented in Figure 2. Functionality Fpke is intended at capturing the functionality of a public-key
encryption scheme as a tool to be used within other protocols. In particular, Fpke is written in a way

4Jumping ahead, we remark that the invalid output is not necessary for obtaining CCA security. In fact, any
CCA-secure encryption scheme that uses the invalid output can be modified into a CCA-secure scheme that does
not use invalid outputs, by outputting a random message in the domain instead of invalid. See more details in [8].
Still, our formalization covers also schemes which do use the invalid output. Indeed, such output may be useful for
providing other properties, in addition to CCA security.

5The explicit requirement in this game that m0 6= m1 is immaterial for the definition of CCA and the later
definition of IND-RCCA (in which choosing m0 = m1 is of no benefit to the attacker), but will be substantial in our
definition of NM-RCCA. Thus, for the sake of uniformity we present all our definitions using the explicit requirement
m0 6= m1.
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The CCA Game

The game proceeds as follows, given an encryption scheme S = (gen, enc, dec), an adversary F , and
value k for the security parameter.

Key generation: Run (e, d)← gen(k), and give e to F .

First decryption stage: When F queries (ciphertext,c), compute m = decd(c) and give m to
F .

Encryption stage: When F queries (test messages,m0,m1), m0,m1 ∈ Dk, and m0 6= m1,
compute c∗ = ence(mb) where b

R← {0, 1}, and give c∗ to F . (This step is performed only
once.)

Second decryption stage: When F queries (ciphertext,c) after c∗ is defined, proceed as fol-
lows. If c = c∗ then give test to F .a Otherwise, compute m = decd(c) and give m to
F .

Guessing stage: When F outputs (guess,b′), the outcome of the game is determined as follows.
If b′ = b then F wins the game. Otherwise, F loses the game.

Figure 1: The CCA game.
aThe symbol test is a reserved symbol, which is different from all possible outputs of dec.

that allows realizations that consist of three non-interactive algorithms without any communication.
(The three algorithms correspond to the key generation, encryption, and decryption algorithms in
the traditional definitions.) All the communication is left to the higher-level protocols that use
Fpke.

Referring to Figure 2, we note that id serves as a unique identifier for an instance of functionality
Fpke (this is needed in a general protocol setting when this functionality can be composed with
other components, or even with other copies of Fpke). The “public key value” e has no particular
meaning in the ideal scenario beyond serving as an identifier for the public key related to this
instance of the functionality, and can be chosen arbitrarily by the attacker. Also, in the ideal
setting ciphertexts serve as identifiers or tags with no particular relation to the encrypted messages
(and as such are also chosen by the adversary without knowledge of the plaintext). Still, rule 1 of
the decryption operation guarantees that “legitimate ciphertexts”, i.e. those produced and recorded
by the functionality under an Encrypt request, are decrypted correctly and the resultant plaintexts
remain unknown to the adversary. In contrast, ciphertexts that were not legitimately generated
can be decrypted in any way chosen by the ideal-process adversary. (Since the attacker obtains
no information on legitimately encrypted messages, we are guaranteed that illegitimate ciphertexts
will be decrypted to values that are independent from the legitimately encrypted messages.) Note
that the same illegitimate ciphertext can be decrypted to different values in different activations.
This provision allows the decryption algorithm to be non-deterministic with respect to ciphertexts
that were not legitimately generated.

Another characteristics of Fpke is that, when activated with a KeyGen request, it always responds
with an (adversarially chosen) encryption key e′. Still, only the first key to be generated is recorded,
and only messages that are encrypted with that key are guaranteed to remain secret. Messages
encrypted with other keys are disclosed to the adversary in full. This modeling represents the fact
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that a single copy of the functionality captures the security requirements of only a single instance
of a public-key encryption scheme (i.e., a single pair of encryption and decryption keys). All the
other keys may provide correct encryption and decryption, but do not guarantee any security.6

Fpke is parameterized by D = {Dk}k∈N, the ensemble of domains of the messages to be en-
crypted. Given security parameter k, Fpke encrypts messages in domain Dk.

Functionality Fpke

Fpke proceeds as follows, when parameterized by message domain ensemble D = {Dk}k∈N and
security parameter k, and interacting with an adversary S, and parties P1, ..., Pn.

Key Generation: Upon receiving a value (KeyGen, id) from some party Pi, do:

1. Hand (KeyGen, id) to the adversary.

2. Receive a value e from the adversary, and hand e to Pi.

3. If this is the first activation then record the value e.

Encryption: Upon receiving from some party Pj a value (Encrypt, id, e′,m) proceed as follows:

1. If m /∈ Dk then return an error message to Pj .

2. If m ∈ Dk then hand (Encrypt, id, e′, Pj) to the adversary. (If e′ 6= e or e is not yet
defined then hand also the entire value m to the adversary.)

3. Receive a “ciphertext” c from the adversary, record the pair (c,m), and hand c to Pj .
(If e′ 6= e or e is not yet defined then do not record the pair (c,m). If the tag c already
appears in a previously recorded pair then return an error message to Pj .)

Decryption: Upon receiving a value (Decrypt, id, c) from Pi (and Pi only), proceed as follows:

1. If there is a recorded pair (c,m) then hand m to Pi.

2. Otherwise, hand the value (Decrypt, id, c) to the adversary. When receiving a value m′

from the adversary, hand m′ to Pi.

Figure 2: The public-key encryption functionality, Fpke

Fpke captures CCA security. We show the equivalence between the notion of security induced
by functionality Fpke and the notion of CCA security. First, recall the following natural transfor-
mation from an encryption scheme S to a protocol πS that is geared toward realizing Fpke.

1. When activated, within some Pi and with input (KeyGen, id), run algorithm gen, output the
encryption key e and record the decryption key d.

6An alternative formulation would instruct Fpke to ignore all KeyGen requests except for the first one. However, such
formulation cannot be realized by key generation algorithms that are run locally within a party without interaction.
This is so since, without interaction, a key generation algorithm cannot tell whether other requests have occurred
in the network. Yet another alternative would instruct Fpke to ignore a KeyGen request unless the session identifier
contains the identity of the requesting party. However, such a formulation would assume that the key generation
algorithm necessarily knows the identity of the party it runs on; we would like to avoid such assumptions in the basic
definition of encryption schemes.
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2. When activated, within some party Pj and with input (Encrypt, id, e′,m), return ence′(m, r)
for a randomly chosen r. (Note that it does not necessarily hold that e′ = e.)

3. When activated, within Pi and with input (Decrypt, id, c), return decd(c).

We show:

Theorem 2 Let S = (gen, enc, dec) be an encryption scheme over domain D. Then S is CCA-
secure if and only if πS securely realizes Fpke with respect to domain D and non-adaptive adver-
saries.

Remark: We stress that protocol πS is only required to realize Fpke with respect to non-adaptive
adversaries. Realizing Fpke with respect to adaptive adversaries is a considerably stronger require-
ment. Indeed, using the techniques of [21], it can be shown that no protocol of the above form can
realize Fpke with respect to adaptive adversaries, for any scheme S. Realizing Fpke with respect to
adaptive adversaries requires additional mechanisms, such as forward secure encryption or highly
interactive solutions based on non-committing encryption.
Proof (sketch): We first show that if πS securely realizes Fpke in the presence of non-adaptive
adversaries then S is CCA-secure. Assume that there exists an adversary F that predicts the
bit b correctly with probability 1/2 + ε, in a CCA interaction with scheme S. We construct an
environment Z that distinguishes with probability ε between an interaction in the ideal process
for Fpke with any ideal-process adversary S, and a real-life interaction with the dummy adversary
Ã and πS . Environment Z invokes a copy of F , and proceeds as follows, in a network of two
uncorrupted parties P1, P2.

1. Initially, Z activates P1 with input (KeyGen, id) for some value of id (say, id = 0), obtains
the public key e and hands e to F .

2. When F generates the two test plaintexts (m0,m1), Z chooses b
R← {0, 1}, activates P2 with

input (Encrypt, id, e,mb), obtains a ciphertext c∗, and hands c∗ to F as the test ciphertext.

3. When F asks its decryption oracle to decrypt a ciphertext c 6= c∗, Z activates P1 with input
(Decrypt, id, c), obtains a plaintext m, and hands m to F .

4. When F outputs a bit b′, Z outputs b⊕ b′ and halts.

Analyzing Z, notice that if Z operates in the real-life model with the dummy adversary Ã and
parties running πS , then the copy of F within Z sees in fact a CCA interaction with scheme S.
Thus, in this case b′ = b with probability at least 1/2 + ε.

In contrast, we claim that when Z operates in the ideal process for Fpke and any ideal-process
adversary, the view of the copy of F within Z is statistically independent of b, thus in this case
b′ = b with probability exactly one half. To see why F ’s view is independent of b recall that the view
of F consists of the text ciphertext c∗, plus the decryptions of all the ciphertexts generated by F
(except for the decryption of c∗). Notice that all of these values are generated by the ideal-process
adversary S. Furthermore, throughout the interaction, the view of S is independent of b.

It remains to show that if S is CCA-secure then πS securely realizes Frpke. This part was already
proven in Claim 15 in [7]. For self containment we repeat this proof here. Let S = (gen, enc, dec) be
a CCA-secure encryption scheme, and let πS be the protocol constructed from S as described above.
We show that πS securely realizes Fpke. Using the alternative definition of security (Definition 4
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on page 22 in [7]), we construct an ideal-process adversary S such that no environment Z can tell
with non-negligible probability whether it interacts with Fpke and S in the ideal process or with
parties running πS and the dummy adversary Ã in the real-life model.

Recall that Ã takes three types of messages from Z: either to corrupt parties, or to report
on messages sent in the protocol, or to deliver some message. However, since we are dealing with
non-adaptive adversaries, there are no party corruption instructions. Furthermore, since protocol
πS involves no sending of messages, there are no requests to report on or deliver messages. In fact,
there is no communication between Z and Ã at all. Thus, the only way in which S can affect the
view of Z is by communicating with the ideal functionality Fpke. Adversary S proceeds as follows.7

1. When S receives a message (KeyGen, id) from Fpke, it runs the key generation algorithm gen,
obtains an encryption key e and an decryption key d, and returns e to Fpke.

2. When S receives a message (Encrypt, id, e′, Pj) from Fpke, it first verifies that e′ = e. If
so, then it computes c = ence(m0, r) for a random r and some fixed m0 ∈ Dk and returns
c to Fpke. If e′ 6= e then S receives also the full value m from Fpke. In this case it returns
ence′(m, r) to Fpke.

3. When S receives a message (Decrypt, id, c) from Fpke, it computes m = decd(c) and returns
m to Fpke.

Analyzing S, assume for contradiction that there is an environment Z that distinguishes between
the real and ideal interactions. We use Z to construct an adversary F that breaks the CCA security
of the encryption scheme S. More precisely, assume that for some value of the security parameter k
we have idealF ,S,Z(k)−realπ,Ã,Z(k) > ε. We show that F guesses the bit b correctly in the CCA
game with probability 1/2 + e/2p, where p is the total number of messages that were encrypted
throughout the run of the system. (Without loss of generality, we assume that in each execution
of the protocol Z asks to encrypt exactly p messages.)

Adversary F proceeds as follows, given a public key e, and having access to a decryption oracle
D and an encryption oracle E. F first randomly chooses a number h

R← {1, ..., p}. Next, F runs
Z on the following simulated interaction with a system running πS (and the dummy adversary Ã).
Let mi denote the ith message that Z asks to encrypt in an execution.8

1. When Z activates some party Pi with input (KeyGen, id), F lets Pi output the value e from
F ’s input.

2. For the first h − 1 times that Z asks to encrypt some message, mi, F lets the encrypting
party return ci = ence(mi).

3. At the hth time that Z asks to encrypt a message, mh, F queries its encryption oracle with
the pair of messages (mh,m0), where m0 ∈ Dk is the fixed message used above, and obtains
the test ciphertext ch. It then hands ch to Z as the encryption of mh.

4. For the remaining p−h times that Z asks to encrypt some message, mi, F lets the encrypting
party return ci = ence(m0).

7We concentrate on the case where the decrypting party is uncorrupted. The case where the decryptor is corrupted
is handled is a straightforward way (details omitted).

8Without loss of generality we assume that Z only asks to encrypt messages with the public key e that was
generated by the decrypting party. Indeed, when Z asks to encrypt a message m with a public key e′ 6= e, it receives
a value c = ence′(m, r) that it can compute by itself.

9



5. Whenever the decryptor Pi is activated with input (Decrypt, id, c) where c = ci for some i,
F lets Pi return the corresponding plaintext mi. (This holds for the case i = h as well as
i 6= h.) If c is different from all the ci’s then F queries its decryption oracle on c, obtains a
value v, and lets Pi return v to Z.

6. When Z halts, F outputs whatever Z outputs and halts.

Analyzing the success probability of F is done via a standard hybrids argument. Let the random
variable Hi denote the output of Z from an interaction that is identical to an interaction with S
in the ideal process, with the exception that the first i ciphertexts are computed as an encryption
of the real plaintexts, rather than encryptions of m0.

It is easy to see that H0 is indistinguishable from the output of Z in the ideal process, and Hp

is identical the output of Z in the real-life model. (This follows from the fact that the scheme S
guarantees that decd(ence(m)) = m except with negligible probability.) Furthermore, in a run of
F , if the value ch that F obtains from its encryption oracle is an encryption of mh then the output
of the simulated Z has the distribution of Hh−1. If ch is an encryption of m0 then the output of
the simulated Z has the distribution of Hh. The theorem follows. 2

3 Replayable CCA (RCCA) Security

This section presents the three notions of security for public-key encryption sketched in the Intro-
duction, all aimed at capturing the intuition that “the adversary should gain nothing from seeing
a legitimately generated ciphertext, except for the ability to generate new ciphertexts that decrypt
to the same value as the given ciphertext”. Following the presentation of the three notions, we
demonstrate their equivalence for encryption schemes with super-polynomial message domains, and
present separating examples for polynomial message domains.

3.1 UC-RCCA: Functionality Frpke

The UC-based formulation of RCCA security is obtained by modifying the Fpke functionality
from Figure 2, as to explicitly allow the adversary, together with the environment, to generate
ciphertexts that decrypt to the same values as legitimately generated ciphertexts. Specifically,
the new functionality, Frpke, modifies step 2 of the Decryption stage in Figure 2 in which the
decrypting party asks to decrypt a ciphertext that was not legally generated by the functionality.
In this case, Frpke allows the adversary to fix the decrypted value to be the same as a previously
encrypted value (without letting the adversary know what this value is). Thus, functionality Frpke

is defined identically to Fpke from Figure 2 except that step 2 of the Decryption stage is re-defined
as follows:

Decryption: Upon receiving a value (Decrypt, id, c) from Pi (and Pi only), proceed as follows:

1. If there is a recorded pair (c,m) then hand m to Pi.

2. Otherwise, hand the value (Decrypt, id, c) to the adversary, and receive a value (α, v)
from the adversary. If α =‘plaintext’ then hand v to Pi. If α=‘ciphertext’ then find a
stored pair (c′,m) such that c′ = v, and hand m to Pi. (If no such c′ is found then halt.)

In the following definition we use the transformation from an encryption scheme S into a protocol
πS as described in the previous section.
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Definition 3 Let S be an encryption scheme. We say that S is UC-RCCA secure if protocol πS

securely realizes Frpke with respect to non-adaptive adversaries.

3.2 NM-RCCA and IND-RCCA: The RCCA games

This section presents two notions of security for encryption schemes, that are formulated via relaxed
versions of the CCA game (See Figure 1 in Section 2), and demonstrates the equivalence of these
notions to the UC-RCCA formulation for encryption schemes with super-polynomial domains. The
two notions are called IND-RCCA and NM-RCCA, and are defined via the IND-RCCA game and
the NM-RCCA game, respectively.

The IND-RCCA game (see Figure 3) differs from the CCA game in one point: When the
adversary generates a (decrypt, c) request, the answer is test whenever c decrypts to either
m0 or m1. Roughly speaking, this captures the intuition that “the ability to generate different
ciphertexts that decrypt to the same values as a given ciphertext should not help the adversary to
win the game.” (As we demonstrate below, in the case of large message spaces, this intuition is
supported by the equivalence between IND-RCCA and UC-RCCA.)

The IND-RCCA game

The game proceeds as follows, given an encryption scheme S = (gen, enc, dec) over a domain ensem-
ble D, an adversary F , and value k for the security parameter.

Key generation: Run (e, d)← gen(k), and give e to F .

First decryption stage: When F queries (ciphertext,c), compute m = decd(c) and give m to
F .

Encryption stage: When F queries (test messages,m0,m1), with m0,m1 ∈ Dk, and m0 6= m1,
compute c∗ = ence(mb) where b

R← {0, 1}, and give c∗ to F . (This step is performed only
once.)

Second decryption stage: When F queries (ciphertext,c) after c∗ is defined, compute m =
decd(c). If m ∈ {m0,m1} then give test to F . Otherwise, give m to F .

Guessing stage: When F outputs (guess,b′), the outcome of the game is determined as follows.
If b′ = b then F wins the game. Otherwise, F loses the game.

Figure 3: The IND-RCCA game

The NM-RCCA game is identical to the IND-RCCA game (Figure 3), with the exception that
the guessing stage is defined as follows:

Guessing stage for NM-RCCA: When F outputs (guess,c), the outcome of the game is de-
termined as follows. Compute m = decd(c); if m = m1−b then F wins the game. Otherwise,
F loses the game.

In order to consider F successful we require it to output an encryption of m1−b. Changing this
requirement to explicitly output m1−b would result in a reformulation of IND-RCCA. Thus the
difference from IND-RCCA is in the fact that F is only required to output an encryption of m1−b,
without necessarily being able to explicitly output m1−b (or, equivalently, b). As we demonstrate
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below, this added strength relative to IND-CCA is significant for small message domains. The
formulation of the attacker’s goal in the NM-RCCA definition follows the non-malleability approach
(and hence the name); see the discussion below.

Definition 4 An encryption scheme S is said to be IND-RCCA secure (resp., NM-RCCA secure)
if any polynomial-time adversary F wins the IND-RCCA game of Figure 3 (resp., the NM-RCCA
game) with probability that is at most negligibly more than one half.

Discussion. The formulation of NM-RCCA is syntactically different than the usual formulation
of definitions of non-malleability. We thus provide an intuitive explanation as to why NM-RCCA
indeed captures the non-malleability requirement, in spite of its different formalization. Roughly
speaking, an encryption scheme is called non-malleable in [11, 3] if it is infeasible for an adversary
to output ciphertexts which decrypt to plaintexts that satisfy some (non-trivial) relation with the
plaintext encrypted under a given “challenge ciphertext” c∗. (A bit more precisely, the attacker is
not given the plaintext encrypted under c∗ but she may choose the probability distribution under
which this plaintext is taken. Thus, “trivial relations” are those that hold for randomly chosen
elements from this distribution.) In the case of non-malleability under chosen-ciphertext attacks
(NM-CCA) the only restriction on the attacker is that it is not allowed to include the ciphertext
c∗ as one of its output ciphertexts (otherwise, the attacker could always output c∗ and satisfy the
“equality” relation.)
In our formulation of NM-RCCA we use the above non-malleability approach to capture our in-
tuition behind the “replayable CCA” notion. The idea is to relax NM-CCA so that there is only
one form of malleability allowed to the attacker: outputting a ciphertext that decrypts to the same
plaintext as c∗. In other words, the attacker is considered successful as long as it uses any relation
other than the “equality” relation. Now, if we carry this idea to the case where the probability
distribution P, from which the plaintext to be encrypted as c∗ is selected, is of the special form
P = [{m0,m1}, P rob(m0) = Prob(m1) = 1/2], with m0,m1 chosen by the attacker, then we obtain
our “non-malleability game” NM-RCCA. Beyond this intuition and relationship to general non-
malleability, the main source of confidence for this definition comes from its equivalence (at least
over super-polynomial domains) with the UC-RCCA notion which captures in a more explicit way
the “intuitive semantics” of RCCA.

3.3 Equivalence for large message domains

Theorem 5 Let S be an encryption scheme whose domain ensemble D is super-polynomial in size.
Then the following three conditions are equivalent: (I) S is UC-RCCA secure; (II) S is NM-RCCA
secure; (III) S is IND-RCCA secure.

Proof: Before proving the claim, it may be instructive to note where the proof of Theorem 2
(Section 2) fails when we move from CCA security to RCCA security. Assume first that we try to
use the proof of Theorem 2 to demonstrate that if πS securely realizes Frpke then S is CCA secure.
Recall that the proof assumes existence of a forger F against S, and constructs an environment Z
that distinguishes an interaction in the ideal process from an interaction with S. A central argument
in the analysis of Z is that, in the ideal process, the view of the simulated F is independent from the
bit b chosen by Z. However, in the case of Frpke this is no longer the case, since the ideal-process
adversary S can instruct Frpke to decrypt any unregistered ciphertext c to the same value mb that
is recoded by Frpke. In this case, Z will hand mb to F , and F will be able to determine b.
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Next, assume that we try to use the proof of Theorem 2 to demonstrate that if S is either IND-
RCCA secure or NM-RCCA secure then πS securely realizes Fpke. Then the ideal-process adversary
S constructed there would no longer be valid: Assume that the scheme S has the property that it is
possible, given only the public key e, to “maul” a ciphertext c into another ciphertext c′ of the same
message. (As we have seen, RCCA security allows this property.) Now, consider an environment
Z that obtains a legitimate ciphertext c of, say, the value 1. It then asks the decryptor to decrypt
c′ (which was generated from c as described above). Then, when interacting with S in the real-life
model, c′ would be decrypted to 1. However, when interacting with Fpke and S in the ideal process,
c′ would be decrypted to 0.

We proceed with the proof. This is done in three steps, showing (I)⇒(II)⇒(III)⇒(I).

UC-RCCA security implies NM-RCCA security. We modify the proof for the case of CCA
(Theorem 2), showing that if πS securely realizes Frpke in the presence of non-adaptive adversaries
then S is NM-RCCA secure. (The proof will hold for any domain ensemble D.) Assume that there
exists an adversary F that predicts the bit b correctly with probability 1/2+ε, in a RCCA interaction
with scheme S. As in the case of CCA, we construct an environment Z that distinguishes with
probability ε between an interaction in the ideal process for Frpke with any ideal-process adversary
S, and a real-life interaction with the dummy adversary Ã and πS . Environment Z invokes a copy
of F , and proceeds as follows, in a network of three parties P1, P2, P3 where only P3 is corrupted.
(The only differences from the construction of Z in the CCA case is that here Z does not hand
F the decrypted message in case this message is either m0 or m1, and that here Z decrypts F ’s
guess.)

1. Initially, Z activates P1 with input (KeyGen, id) for some value of id (say, id = 0), obtains
the public key e and hands e to F .

2. When F generates the two test plaintexts (m0,m1), Z chooses b
R← {0, 1}, activates P2 with

input (Encrypt, id, e,mb), obtains a ciphertext c∗, and hands c∗ to F as the test ciphertext.

3. When F asks its decryption oracle to decrypt a ciphertext c, Z activates P1 with input
(Decrypt, id, c), and obtains a plaintext m. If m ∈ {m0,m1} then hand test to F . Other-
wise, hand m to F .

4. When F outputs a “guess ciphertext” c, Z activates P1 with input (Decrypt, id, c), and
obtains a plaintext m. If m = mb′ for b′ ∈ {0, 1} then Z outputs b⊕ b′. Otherwise, Z outputs
a random coin toss.

Analogously to the CCA case, it is easy to see that if Z operates in the real-life model with the
dummy adversary Ã and parties running πS , then the copy of F within Z sees in fact a NM-RCCA
interaction with scheme S. Thus, in this case outputs 1 with probability at least 1/2 + ε.

As in the CCA case we claim that when Z operates in the ideal process for Frpke and any
ideal-process adversary, the view of the copy of F within Z is statistically independent of b, thus
b′ = b with probability exactly one half. Here however the independence comes from the fact Z
answers the decryption queries of F in a way that is independent from the bit b, regardless of the
values received by Z from the decryptor Pi. (This is so since, in contrast to the CCA game, in the
NM-RCCA game the attacker never receives a decryption of a ciphertext that decrypts to any one
of the two test messages.)
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NM-RCCA security implies IND-RCCA security. This part of the proof is immediate
(and does not depend on the size of the domain ensemble). Assume we have an adversary A that
succeeds in an IND-RCCA game against S with probability 1/2 + ε. Then construct the following
adversary A′ that succeeds in an NM-RCCA game against S with probability 1/2 + ε. Adversary
A′ runs A, with the exception that when A outputs a “guess message” m, A′ encrypts m to obtain
c = ence(m), and outputs a “guess ciphertext” c.

IND-RCCA security implies UC-RCCA security. We modify the proof for the case of CCA
(Theorem 2), showing that if S is IND-RCCA secure then πS securely realizes Frpke. This part
of the proof works only if the domain ensemble D is of super-polynomial size. As in the case of
CCA (Theorem 2), we construct an ideal-process adversary S such that no environment Z can tell
with non-negligible probability whether it interacts with Frpke and S in the ideal process or with
parties running πS and the dummy adversary Ã in the real-life model. However, here the way S
deals with encryption and decryption requests (made by Frpke) is somewhat different:

1. When S receives a message (KeyGen, id) from Frpke, it runs the key generation algorithm
gen, obtains an encryption key e and a decryption key d, and returns e to Frpke.

2. When S receives a message (Encrypt, id, e′, Pj) from Frpke, it first verifies that e′ = e. If so,
it computes c = ence(r, r′) for r

R← Dk and random r′ of the appropriate length, records the
pair (r, c), and returns c to Frpke. If e′ 6= e then S receives also the full value m from Frpke.
In this case it returns ence′(m, r) to Frpke.

3. When S receives a message (Decrypt, id, c) from Frpke, it first computes m = decd(c). If
m = r for one of the recorded r’s then S returns the value (‘ciphertext’, c′) to Frpke, where
c′ is the ciphertext recorded with r. Otherwise, S returns m to Frpke. (The rationale here is
that if decd(c) = r and r was generated by S in association with some encryption operation,
then the plaintext that the environment expects to see associated with c is the plaintext that
was given to Frpke in that encryption operation. Here we use the fact that the size of the
message space is large, thus the probability of collisions is small.)

Analyzing S, assume for contradiction that there is an environment Z that distinguishes between
the real and ideal interactions. We use Z to construct an adversary F that breaks the IND-RCCA
security of the encryption scheme S. More precisely, assume that for some value of the security
parameter k we have idealFrpke,S,Z(k) − realπ,Ã,Z(k) > ε. We show that F guesses the bit b
correctly in the IND-RCCA game with probability 1/2 + e/4p, where p is the total number of
messages that were encrypted throughout the run of the system. (Without loss of generality, we
assume that in each execution of the protocol Z asks to encrypt exactly p messages.)

We first establish the following. Consider an interaction of Z with simulator S in the ideal
process for Frpke, and let B be the event where one of the values that Z asks to encrypt equals one
of the random values r that S chose in its Step 2. We claim that event B happens with negligible
probability. More precisely, if event B occurs with probability greater than ε/2 then it is possible
the construct an adversary F that wins in an IND-RCCA game with scheme S with probability
1/2 + 1/2p · (ε/2 − 1/s), where s is the size of the message space. (F runs Z and plays the role
of both S and Frpke for Z. It then chooses two random challenge plaintexts r0 and r1, obtains a
test ciphertext c∗, and hands c∗ to Z as the encryption of the hth plaintext to be encrypted, where
h

R← [p]. If Z later asks to encrypt either r0 (resp., r1) then F outputs 0 (resp., 1) and halts. If Z
does not ask to decrypt either r0 or r1 then F outputs a coin-toss. Indeed, if c∗ is an encryption
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of r0 then F outputs 1 with probability 1/s. If c∗ is an encryption of r1 then F outputs 1 with
probability at least ε/2. We omit further details. Note that F does not use its decryption oracle
at all.)

For the rest of the analysis we assume that event B does not occur, and construct an adversary
F such that if idealFrpke,S,Z(k) − realπ,Ã,Z(k) > ε/2 then F wins the IND-RCCA game with
probability 1/2+e/2p. Adversary F proceeds as follows, given a public key e, and having access to
a decryption oracle D and an encryption oracle E. F first randomly chooses a number h

R← {1, ..., p}.
Next, F runs Z on the following simulated interaction with a system running πS (and the dummy
adversary Ã). Let mi denote the ith message that Z asks to encrypt in an execution.9

1. When Z activates some party Pi with input (KeyGen, id), F lets Pi output the value e from
F ’s input.

2. For the first h − 1 times that Z asks to encrypt some message, mi, F lets the encrypting
party return ci = ence(mi).

3. At the hth time that Z asks to encrypt a message, mh, F queries its encryption oracle with
the pair of messages (mh, r) where r

R← Dk, and obtains the test ciphertext ch. It then hands
ch to Z as the encryption of mh.

4. For the remaining p−h times that Z asks to encrypt some message, mi, F lets the encrypting
party return ci = ence(r, r′) where r

R← Dk and r′ is random.

5. Whenever the decryptor Pi is activated with input (Decrypt, id, c) where c = ci for some i,
F lets Pi return the corresponding plaintext mi. (This holds for the case i = h as well as
i 6= h.) If c is different from all the ci’s then F queries its decryption oracle on c, and obtains
a value v. If v 6= test then F lets Pi return v to Z. If v = test then F lets Pi return mh

to Z. (The rationale here is as follows: If v = test then c decrypts either to mh or to r.
However, as we assumed that Z never asks to encrypt r, then in the ideal process c would
always decrypt to mh.)

6. When Z halts, F outputs whatever Z outputs and halts.

Analyzing the success probability of F is done via a hybrids argument, similar to the proof of
Theorem 2. Let the random variable Hi denote the output of Z from an interaction that is identical
to an interaction with S in the ideal process, with the exception that the first i ciphertexts are
computed as an encryption of the real plaintexts, rather than encryptions of random values.

It can be seen that H0 is distributed indistinguishable from the output of Z in the ideal process
(conditioned on the event that B never occurs). Also, Hp is distributed identically to the output of Z
in the real-life model (this follows from the fact that the scheme S guarantees that decd(ence(m)) =
m). Furthermore, in a run of F , if the value ch that F obtains from its encryption oracle is an
encryption of mh then the output of the simulated Z has the distribution of Hh−1. If ch is an
encryption of rh then the output of the simulated Z has the distribution of Hh. The claim follows.
2

9Without loss of generality we assume that Z only asks to encrypt messages with the public key e that was
generated by the decrypting party. Indeed, when Z asks to encrypt a message m with a public key e′ 6= e, it receives
a value c = ence′(m, r) that it can compute (or, sample) by itself.
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3.4 Polynomial message domains

In Theorem 5 it was proved that for super-polynomial domain ensembles, the notions UC-RCCA,
NM-RCCA and IND-RCCA are equivalent. Here we show that this premise is necessary. As
mentioned in the proof of Theorem 5 it holds for all domain ensembles that UC-RCCA implies NM-
RCCA and that NM-RCCA implies IND-RCCA. A minimal assumption for separating is therefore
that there exist IND-RCCA secure encryption schemes in the first place. We do not know whether
UC-RCCA and NM-RCCA are equivalent for polynomial domain ensembles.

Theorem 6 For all polynomial-size domain ensembles D, if there exists an IND-RCCA secure
encryption scheme with domain ensemble D, then there exists an IND-RCCA secure encryption
scheme with domain ensemble D which is not NM-RCCA secure.

Proof: Let S = (gen, enc, dec) be an IND-RCCA secure encryption scheme with polynomial-
size domain ensemble D = {Dk}. Consider the encryption scheme S′ = (gen′, enc′, dec′), where
gen′ = gen, enc′e(m) = enc(m)eence(n) for n∈R Dk \ {m}, and dec′d(c1, c2) = decd(c1).

We first argue that S′ is not NM-RCCA secure. Consider the following adversary A. A
outputs (test messages,m0,m1) for any pair of messages with m0 6= m1. It then receives
(c, d) = (ence(mb), ence(n)), where n 6= mb. A then outputs (ciphertext, (d, c)). If the an-
swer is test, then n ∈ {m0,m1} and since n 6= mb it must be the case that n = m1−b, so A outputs
(guess, (d, c)) and wins the game. If the answer is not test, then A outputs (guess, enc′e(m0)) and
wins the game with probability 1

2 . As long as D is polynomial, then n = m1−b with non-negligible
probability, and so A has an advantage non-negligibly over 1

2 .
Next we argue that S′ is IND-RCCA secure. Intuitively, the reason is the only difference

between S and S′ is that in S′ the adversary obtains also the ciphertext c2, and c2 provides no
help in decrypting c1. For a more rigorous proof, consider any IND-RCCA adversary A attacking
S′, and define the following probabilities. For b, b′ ∈ {0, 1} let pb be the probability that A returns
(guess, 1) when given the challenge ciphertext (ence(mb), ence(n)) where n∈R Dk\{mb}, let pb,∗ be
the probability that A returns (guess, 1) when given the challenge ciphertext (ence(mb), ence(n))
where n∈R Dk \ {m0,m1} and let pb,b′ be the probability that A returns (guess, 1) when given the
challenge ciphertext (ence(mb), ence(mb′)).

We wish to prove that |p0 − p1| is negligible. Let d = 1
|Dk|−1 . Observe that pb = dpb,1−b + (1−

d)pb,∗, so p0 − p1 = d(p0,1 − p1,0) + (1− d)(p0,∗ − p1,∗). We prove the claim by demonstrating that
both p0,1 − p1,0 and p0,∗ − p1,∗ are negligible.

Consider first the following IND-RCCA adversary B1 that interacts with the underlying scheme
S. B1 receives e and hands it to A. If A outputs (test messages,m0,m1) then B1 outputs
(test messages,m0,m1) and receives an encryption c = ence(mb). Then B1 computes d = ence(n)
for n∈R Dk \{m0,m1} and hands (c, d) to A. If after this A outputs (ciphertext, (c1, c2)) then B1

outputs (ciphertext, c1) and returns the answer to A. If A outputs (guess, e), then B1 outputs
(guess, e). Notice that the probability that B1 outputs 1 given that c = ence(mb) is exactly pb,∗.
This implies that p0,∗ − p1,∗ is negligible.

Next consider the following IND-RCCA adversary B2. B2 interacts with S and is identical to
B1 with the following exceptions. First, it computes d as d = ence(ma) for a∈R {0, 1}. Next, it
chooses a bit f ∈R {0, 1}. If f = 0 then it hands (c, d) to A. If f = 1 then it hands (d, c) to
A. Finally, when A outputs (guess, e), then B2 outputs (guess, e + f). The probability that B2

outputs (guess, 1) given that c = ence(mb) is p̃b = 1
4(pb,0 + pb,1 + (1− p0,b) + (1− p1,b)), and notice

that p̃0 − p̃1 = 1
2(p0,1 − p1,0). Since p̃0 − p̃1 is negligible, then also p0,1 − p1,0 is negligible. 2
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Important remark about terminology. Due to the equivalence between the notions of IND-
RCCA, NM-RCCA and UC-RCCA security for super-polynomial domain ensembles (Theorem 5), we
will usually refer to these notions under the generic term of RCCA security, and assume, for simplicity,
super-polynomial domains (except if otherwise stated).

4 Between RCCA and CCA security: Detectable RCCA

Here we investigate the relations between RCCA security and CCA security, and introduce the
notion(s) of “detectable RCCA”. In particular, we establish the relationship between RCCA se-
curity and the relaxation of CCA security presented in [18, 23, 1]. These results include a (strict)
separation between these notions, and consequently between RCCA and CCA security. In partic-
ular, this demonstrates that there exist encryption schemes that are not secure in the sense of the
definitions from [18, 23, 1] and yet are sufficiently secure for most practical applications of CCA
secure encryption. We complement these findings by showing (Section 4.3) how to construct a
CCA-secure scheme (with any domain size) from any RCCA-secure scheme whose domain size is
exponential in the security parameter. This transformation uses symmetric encryption and mes-
sage authentication only, thus demonstrating that once RCCA security is obtained for large enough
message spaces, CCA security can be obtained with moderate overhead (and without additional
assumptions).

4.1 Detectable RCCA

The first and obvious fact to observe regarding the relation between RCCA and CCA security is that
the former is strictly weaker than the latter. Indeed, a simple inspection of the definitions of CCA
and RCCA security shows that any scheme that is CCA-secure is also RCCA-secure (under any of
the definitions of RCCA security from Section 3). On the other hand, there are simple examples of
encryption schemes that are RCCA but not CCA secure. One such example was mentioned in the
introduction in which a CCA-secure scheme is modified by instructing the (modified) encryption
to append a ‘0’ bit to each ciphertext, and defining the (modified) decryption algorithm to ignore
this bit. It is easy to see that the obtained scheme is not CCA but it does satisfy our definition(s)
of RCCA security. Other examples exist. Specifically, consider the usual practice of allowing
encryption schemes to add arbitrary padding to ciphertexts and later discard this padding before
performing decryption. (This padding is usually required in order to align the length of ciphertexts
to a prescribed length-boundary – e.g., to a multiple of 4 bytes.) Other examples include encryption
schemes that naturally allow for more than one representation of ciphertexts, such as the endianess
example in the introduction, or the example in [23] related to dual point representations in elliptic-
curve cryptosystems.

All these examples have the property that given a certain ciphertext c, anyone can easily
produce a different ciphertext c′ that decrypts to the same plaintext (e.g., by changing the endianess
representation or modifying the padding). Also common to these examples is the fact that if
someone (say, the attacker) indeed modifies a ciphertext c into a ciphertext c′ in one of the above
ways then c and c′ satisfy a relation that is easy to test with the sole knowledge of the public
key. This fact (and the realization that these “syntactic deficiencies” do not seem to effect the
actual security of these encryption schemes when used in many applications) has motivated the
introduction of the relaxations of CCA security presented in [18, 23, 1]. Essentially, all these notions
allow for “replay” of plaintexts by modifying the ciphertext, but restrict the allowed modifications
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to be efficiently detectable given the public key. RCCA further relaxes this requirement by allowing
any form of ciphertext modification that does not change the plaintext, without insisting on the
ability to detect such a replay. (Indeed, as argued in the introduction and demonstrated in Section
5, RCCA security is sufficient for many applications that use CCA secure encryption.)

A natural question that arises from this discussion is whether RCCA security is truly more
relaxed than the notions considered in [18, 23, 1], namely, is there an RCCA-secure scheme for which
the modification of ciphertexts is not “publicly detectable”? Here we provide a positive answer
to this question. Moreover, we show a separation between the notions of “publicly detectable”
and “secretly detectable” RCCA. In the later notion, the intentional (malicious) mauling of one
ciphertext into another that decrypts to the same plaintext may not be publicly detectable, i.e.
detected with the sole knowledge of the public key, but can be detected by the decryptor using the
secret decryption key. We start by formalizing the notions discussed above.

Definition 7 Let S = (gen, enc, dec) be an encryption scheme.

1. We say that a family of binary relations ≡e (indexed by the public keys of S) on ciphertext
pairs is a compatible relation for S if for all key-pairs (e, d) of S we have:

(a) For any two ciphertexts c, c′, if c ≡e c′ then decd(c) = decd(c′), except with negligible
probability over the random choices of algorithm dec.

(b) For any plaintext m in the domain of S, if c and c′ are two ciphertexts obtained as inde-
pendent encryptions of m (i.e., two applications of algorithm enc on m using independent
random bits), then c ≡e c′ only with negligible probability.

2. We say that a relation family as above is publicly computable (resp. secretly computable) if
for all key pairs (e, d) and ciphertext pairs (c, c′) it can be determined whether c ≡e c′ using
a probabilistic polynomial time algorithm taking inputs (e, c, c′) (resp. (e, d, c, c′)).

3. We say that S is publicly-detectable replayable-CCA (pd-RCCA) if there exists a compatible
and publicly computable relation family ≡e such that S is secure according to the standard
definition of CCA with the following modification to the CCA game from Figure 1: if, after re-
ceiving the challenge ciphertext c∗, the adversary queries the decryption oracle on a ciphertext
c such that c ≡e c∗ then the decryption oracle returns test.

Similarly, we say that S is secretly-detectable replayable-CCA (sd-RCCA) if the above holds for
a secretly computable relation family ≡e.

The reader can verify that the notion of pd-RCCA is essentially equivalent to the notions of loose
ciphertext-unforgeability, benign malleability, and generalized CCA security, presented, respec-
tively, in [18, 23, 1]. The term “compatible relation” is adapted from [23] where it is defined
without item 1(b). Indeed, in the case of “public detectability” requirement 1(b) is redundant
as it follows from the semantic security of the encryption scheme. In contrast, this requirement
is significant in the case of “secret detectability”; without it this notion is trivially equivalent to
RCCA. More significantly, requirement 1(b) captures the need of some applications in which “de-
tectability” is useful provided that the decryptor can tell apart legitimately generated ciphertexts
from those that are created by mauling a given (legitimate) ciphertext.
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4.2 Relations among notions of detectable RCCA

We investigate the relations among the different flavors of detectable RCCA security, and between
these and CCA security. We show:

Theorem 8 CCA ⇒ pd-RCCA ⇒ sd-RCCA ⇒ RCCA. Furthermore, pd-RCCA secure encryption
schemes exist then the first two implications are strict.

It is easy to see that any encryption scheme that is CCA secure is also pd-RCCA (with the
equality relation as the compatible relation). Also, immediate from the definition we get that pd-
RCCA implies sd-RCCA. On the other hand, as discussed above, any pd-RCCA scheme can be
transformed into a pd-RCCA scheme that is not CCA by appending to the ciphertext a “dummy
bit” that is ignored by the decryption operation. Therefore, we get a strict separation between
CCA and pd-RCCA security. In the rest of this subsection we show that sd-RCCA security implies
RCCA security (Claim 9), and establish a separation between the class of pd-RCCA and sd-RCCA
secure encryption schemes (Claims 10 and 11). Whether RCCA and sd-RCCA are equivalent
remains open – see Remark 12.

Claim 9 For any encryption scheme S, if S is sd-RCCA secure, then S is IND-RCCA secure.

Proof: Let A be an IND-RCCA adversary that interacts with scheme S. We construct an sd-
RCCA adversary A′ that is successful with essentially the same probability as A. Adversary A′

runs a copy of A and follows the instructions of A with the following exception. When A asks to
decrypt a ciphertext c and the response is one of the two test messages, then A′ provides A with
the response test.

The view of A when run by A′ differs only negligibly from its view in a true IND-RCCA game.
This is so since in the sd-RCCA game A′ gets a test response for a ciphertext c that does not
decrypt to one of the test messages only when the relation ≡e violates the compatibility requirement
with respect to c and the test ciphertext, and this occurs only with negligible probability. 2

Separation between pd-RCCA and sd-RCCA We provide two separating examples between
pd-RCCA and sd-RCCA. The first one (Claim 10) only assumes that there exist sd-RCCA schemes.
The second one (Claim 11) is essentially the “double encryption” example from the introduction,
where the outer encryption is taken to be the El-Gamal encryption scheme. This example relies on
a number-theoretic assumption (the Decisional Diffie-Hellman assumption), but can be regarded
as somewhat more natural. In addition, it points to another interesting issue, randomizability of
RCCA-secure encryption, which is presented below.

Claim 10 If there exists sd-RCCA secure encryption schemes, then there exists an encryption
scheme which is sd-RCCA secure and which is not pd-RCCA secure.

Proof: Let S = (gen, enc, dec) be an sd-RCCA secure encryption scheme and consider the following
encryption scheme S′ = (gen′, enc′, dec′). The key generation algorithm runs gen twice to obtain
key-pairs (e0, d0) and (e1, d1). The public key is (e0, e1). The encryption algorithm is given by
enc′e0,e1

(m) = (ence0(m), ence1(0)). The decryption algorithm on input (c0, c1) outputs invalid
if decd1(c1) = 1 and otherwise outputs decd0(c0). (We remark that the instance (e1, d1) can be
replaced by any scheme that is semantically secure against chosen plaintext attacks. It is chosen
to be an instance of S for simplicity only.)
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We first show that scheme S′ is sd-RCCA secure. Define a compatible relation for S′ as follows.
Let≡e,d be a compatible relation for S given by Def. 7. Consider the following relation≡e0,e1,d0,d1 for
S′: (c0, c1) ≡e0,e1,d0,d1 (c′0, c

′
1) if either decd1(c1) = decd1(c

′
1) = 1, or decd1(c1) 6= 1 and decd1(c

′
1) 6= 1

and c0 ≡e0,d0 c′0. It is straightforward to verify that ≡e0,e1,d0,d1 is compatible with S′ whenever
≡e,d is compatible with S. Notice in particular that if e.g. decd1(c1) = 1 and decd1(c

′
1) 6= 1,

then (c0, c1) 6≡e0,e1,d0,d1 (c′0, c
′
1) as required by the definition of compatibility. (This is required

since dec′d0,d1
(c0, c1) = invalid and dec′d0,d1

(c′0, c
′
1) ∈ Dk and consequentially decd0,d1(c0, c1) 6=

dec′d0,d1
(c′0, c

′
1)).

Now, let A′ be an adversary that interacts with S′ with relation ≡e0,e1,d0,d1 . We construct
an adversary A that interacts with scheme S and relation ≡e,d, and succeeds with essentially the
same probability as S′. Given public key e0 of scheme S, Adversary A generates a new pair of
keys (e1, d1) of S, and invokes a copy of A′ with public key (e = e0, e1). When A′ provides the
test messages m0,m1, A forwards m0,m1 to its oracle, obtains a ciphertext c, and hands A′ the
ciphertext (c, Ee1(0)). When A′ generates a decryption query (c0, c1), A decrypts c1. If c1 decrypts
to 1 then it answers invalid to A′; otherwise, A asks its own decryption oracle on c0 and forwards
the answer to A′. Finally A outputs whateverA′ outputs. The validity of A is straightforward.
(Here we only use the fact that the instance (e1, d1) decrypts messages correctly.)

It remains to show that scheme S′ is not pd-RCCA secure. Assume for the sake of contradiction
that S′ is pd-RCCA secure and let ≡e0,e1 be the compatible publicly computable relation guaranteed
by Def. 7. We first assert the following two facts:

1. Let m be a message in the domain of S, let c0 = Ee0(m), and let c1, c
′
1 be two independently

generated encryptions of 0 with public key e1. Then (c0, c
′
1) ≡(e0,e1) (c0, c1) except with

negligible probability. To see that this holds, consider the following adversary A for the pd-
RCCA game with S′. A receives the public key (e0, e1) and picks arbitrary test messages m0

and m1 where m0 6= m1. When it receives the challenge ciphertext c∗ = (c0, c1) it computes
c′1 = ence1(0) and computes whether (c0, c

′
1) ≡(e0,e1) (c0, c1). If (c0, c

′
1) ≡(e0,e1) (c0, c1), then

it outputs a random guess. Otherwise it queries the decryption oracle on (c0, c
′
1), obtains mb

and outputs b. In the second case A wins the game, so by the assumption that S′ is pd-RCCA
secure it follows that (c0, c

′
1) ≡(e0,e1) (c0, c1) except with negligible probability.

2. Let m be a message in the domain of S, let c0 = Ee0(m), and let c1 = Ee1(0) and let
c′1 = Ee1(1). Then (c0, c

′
1) ≡(e0,e1) (c0, c1) only with negligible probability. This follows

from the compatibility of ≡(e0,e1) and the facts that (c0, c
′
1) decrypts to invalid and (c0, c1)

decrypts to m.

It is now easy to use the relation ≡(e0,e1) to construct an adversary A that breaks the semantic
security of S against chosen plaintext attacks. Specifically, given a public key e1 and a ciphertext
c which is either an encryption of 0 or an encryption of 1, A generates keys (e0, d0) of S and
ciphertexts c′ = Ee1(0) and c0 = Ee0(m) for some m, and outputs ‘0’ iff (c0, c) ≡(e0,e1) (c0, c

′). 2

Publicly randomizable encryption. An encryption scheme is publicly randomizable if it is pos-
sible, given a public key e and a ciphertext c, to generate another ciphertext c′ such that c′ decrypts
to the same value v as c, and in addition c′ is indistinguishable to an external observer from Ee(v)
(i.e., from an independently generated encryption of v). Of course, publicly randomizable schemes
can never be pd-RCCA, since the existence of a compatible relation contradicts the randomizabil-
ity. Claim 11 below demonstrates that, under the Decisional Diffie-Hellman assumption, there exist
sd-RCCA schemes that are publicly randomizable.
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Claim 11 If there exists an sd-RCCA secure encryption scheme and there exists an instantiation
of the ElGamal encryption scheme[12] that is semantically secure against chosen-plaintext attacks
(CPA), then there exists an encryption scheme which is sd-RCCA secure and is not pd-RCCA.

Proof: Let S = (gen, enc, dec) be an sd-RCCA secure encryption scheme and consider the following
encryption scheme S′ = (gen′, enc′, dec′). The key generation algorithm runs gen to obtain a key-
pair (e, d) and then generates a key-pair ((g, h = gx), x) for a semantically secure instantiation of the
ElGamal encryption scheme. The encryption algorithm is given by enc′e,g,h(m) = (gr, ence(m)hr)
for r∈R Zord(g) and decryption is given by dec′d,x(α, β) = decd(βα−x).

Scheme S′ publicly randomizable. Specifically, given a public key (e, g, h) and a ciphertext
c = (α, β), choose r at random from the underlying group and compute c′ = (α · gr, β · hr). It
is easy to see that c′ decrypts to the same value as c, and that under the DDH assumption c′ is
indistinguishable from a random pair of elements in G.

We next prove that S′ is sd-RCCA secure. In fact, we prove a more general claim: Given
any sd-RCCA secure encryption scheme S = (G, E,D), and a scheme S′′ = (G′′, E′′, D′′) that is
semantically secure against chosen plaintext attacks, the composed scheme S′ = (G′, E′, D′) where
G′ runs (e, d) = G(), e′′, d′′) = G′′() and outputs ((e, e′′), (d, d′′)), E′

e,e′′(m) = E′′
e′′(Ee(m)), and

D′′
d,d′′(c) = Dd(D′′

d′′(c)), is sd-RCCA secure. Let ≡(e,d) be the compatible relation for S given by
Def. 7. Then define a compatible relation ≡(e,d,e′′,d′′) for S′ by c0 ≡(e,d,e′′,d′′) c1 iff D′′

d′′(c0) ≡e,d

D′′
d′′(c1). It is easy to verify that ≡(e,d,e′′,d′′) is compatible (with S′) when ≡(e,d) is compatible (with

S). So, to prove that S′ is sd-RCCA secure consider any adversary F ′ for the sd-RCCA game with
S′ and ≡(e,d,e′′,d′′) and consider the following adversary F for the sd-RCCA game with S and ≡e,d.
First F receives the key e and generates a random key-pair (e′′, d′′) for S′′, hands (e, e′′) to F ′ and
starts running F ′. If F ′ requests a decryption of c, then F requests a decryption of D′′

d′′(c) and
hands the result to F ′. When F ′ specifies test messages m0 and m1, then F specifies the same
test messages, receives a challenge ciphertext c∗ and hands E′′

e′′(c
∗) to F ′. When F ′ makes a guess,

F makes the same guess. It is straight forward to verify that the probability that F wins the
sd-RCCA game with S and ≡e,d is exactly the probability that F ′ wins the RCCA game with S′

and ≡e,d,e′′,d′′ , which proves the claim. 2

Remark 12 (RCCA vs. sd-RCCA) The above results leave open the question of whether one
can separate between sd-RCCA and RCCA (i.e., if there exists an RCCA encryption scheme which
is not sd-RCCA). A related “meta question” is whether there are natural applications where sd-
RCCA suffices but plain RCCA does not. (These would be applications where the decryptor, and
only the decryptor, wishes to know whether a given ciphertext was “honestly generated.”)

Another interesting related question is whether there exist RCCA-secure encryption schemes
which are secretly randomizable. A secretly randomizable scheme is a publicly randomizable one,
with the additional requirement that the generated ciphertext c′ remain indistinguishable from a
random encryption of the same value, even when the decryption key is known.

4.3 From RCCA security to CCA security

This section demonstrates that the existence of an RCCA secure public-key encryption scheme with
large message domain implies the existence of a CCA secure public-key encryption scheme. To be
precise, by large we will mean that the encryption scheme can encrypt messages of length k, where
k is the security parameter.
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The construction consists of two steps. First we recall that the existence of any secure encryption
scheme implies the existence of a CCA secure symmetric encryption scheme. We then show how
to combine an RCCA secure public-key encryption scheme with large domain and a CCA secure
symmetric encryption scheme to obtain a CCA secure public-key encryption scheme. The first step
is very inefficient, whereas the second step results in an efficient encryption scheme if the RCCA
secure public-key encryption scheme and the CCA secure symmetric encryption scheme are both
efficient.

For the first step, if an RCCA secure public-key encryption scheme (gen, enc, dec) exists, then
a one-way function exists, e.g. the function (e, d) = gen(r), where r is the random bits used in
generating (e, d). Now, the existence of a one-way function through a series of well-known reductions
implies the existence of a CCA secure symmetric encryption scheme (E,D) encrypting unbounded
length messages.10 To prepare for the second step, let l(k) denote the key-length of (E,D) as a
function of the security parameter k and consider the public-key encryption scheme (gen, enc, dec)
given by

gen(k) = gen(1max(k,l(k))) .

Clearly (gen, enc, dec) is RCCA secure if (gen, enc, dec) is RCCA secure. Furthermore, (gen, enc, dec)
can encrypt messages of length l(k). In the following we will therefore assume that we have ac-
cess to a CCA secure symmetric encryption scheme (E,D) with key-length l and an RCCA secure
public-key encryption scheme (gen, enc, dec) capable of encrypting messages of length l.

Consider then the public-key encryption scheme (gen, enc, dec) given by

ence(m) = [K R← {0, 1}l(k); c1 = ence(K); c2 = EK(c1‖m) : (c1, c2)] ,

decd(c1, c2) = [K ← decd(c1); c′1‖m = DK(c2); if c′1 6= c1 then m← invalid : m] .

This construction of (gen, enc, dec) resembles the usual extension of a CCA secure public-key
encryption scheme with a CCA secure symmetric encryption scheme for doing hybrid encryption
(as described in Section 5.4). The only difference is the encryption of c1 under the symmetric key.
This encryption of c1 functions as a MAC which protects against ‘mauling’ of c1. Indeed, if one is
not interested in hybrid encryption but only in obtaining CCA security, the encryption of m could
be done as c1 = ence(K‖m); c2 = macK(c1), where mac is a strong message authentication code.
The proof would follow the same lines as the proof of the following theorem.

Theorem 13 If (E,D) is a CCA secure symmetric encryption scheme with key-length l and
(gen, enc, dec) is an RCCA secure public-key encryption scheme capable of encrypting messages
of length l, then the public-key encryption scheme (gen, enc, dec) is CCA secure.

Proof: For all adversaries F let success(gen,enc,dec)(F ) denote the probability that F wins the
CCA game against (gen, enc, dec). We are going to prove that success(gen,enc,dec)(F ) is negligibly
close to 1

2 .
Consider first the following slightly modified CCA game:

1. Run (e, d)← gen(k) and give e to F .

Then generate uniformly random K ′ ∈ {0, 1}l(k).
10I.e., the encryption scheme itself does not contain any bound on the message-length. However, under attack by

a given adversary F the length of the messages encrypted is of course bounded by a polynomial as F is required to
be PPT.
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2. When F outputs (test messages,m0,m1), where m0 6= m1, compute c∗1 = ence(K∗) for
uniformly random K∗ ∈ {0, 1}l(k). Then compute c∗2 = EK′(c∗1‖mb) for uniformly random
b ∈ {0, 1} and give c∗ = (c∗1, c

∗
2) to F .

3. When F outputs (ciphertext, (c1, c2)), if (c1, c2) = (c∗1, c
∗
2) then output test. Otherwise,

compute K = decd(c1). If K = K∗, then let K = K ′. Then compute c′1‖m = DK(c2). If
c′1 = c1, then output m, otherwise output invalid.

4. When F outputs (guess, b′), the output of the game is determined as follows. If b′ = b then
output 1. Otherwise, output 0.

Let success′
(gen,enc,dec)

(F ) denote the expected output of the game. We are going to prove that

for all adversaries F we have that |success′
(gen,enc,dec)

(F )− 1
2 | is negligible. We do this by reducing

to the CCA security of (E,D). Given any adversary F for the slightly modified CCA game we
construct a CCA adversary F ′ attacking (E,D) as follows:

1. Run (e, d)← gen(k) and give e to F .

We have access to a CCA game for the symmetric encryption scheme (E,D).

Let K ′ denote the uniformly random key K ′ ∈ {0, 1}l(k) generated by that CCA game.

2. When F outputs (test messages,m0,m1), compute c∗1 = ence(K∗) for uniformly random
K∗ ∈ {0, 1}l(k). Then let M0 = c∗1‖m0, let M1 = c∗1‖m1 and output (test messages,M0,M1)
to receive c∗2 = EK′(c∗1‖mb) for a uniformly random b ∈ {0, 1}. Then give c∗ = (c∗1, c

∗
2) to F .

3. When F outputs (ciphertext, (c1, c2)), if (c1, c2) = (c∗1, c
∗
2) then input test to F . Otherwise,

compute K = decd(c1).

If K 6= K∗, then compute c′1‖m = DK(c2). If c′1 = c1, then output m, otherwise, output
invalid.

If K = K∗ we would like to decrypt c2 under the key K ′ defined in Step 1. We know that
c1 6= c∗1 or c2 6= c∗2. If c2 6= c∗2, then output c2 to the CCA game to receive c′1‖m = DK′(c2).
If c′1 = c1, then output m, otherwise, output invalid. If c2 = c∗2, then c1 6= c∗1. Since
c2 = c∗2 = EK′(c∗1‖mb) it therefore follows that (c1, c2) is an invalid ciphertext. Therefore
input invalid to F .11

4. When F outputs (guess, b′), output (guess, b′).

It follows by inspection that the expected value of success′
(gen,enc,dec)

(F ) is exactly the prob-

ability that F ′ wins the CCA game against (E,D),12 which by assumption is negligibly close to
1
2 .

It is therefore enough now to prove that |success(gen,enc,dec)(F ) − success′
(gen,enc,dec)

(F )| is
negligible for all adversaries F . We are going to do this by a reduction to the RCCA security of
(gen, enc, dec). For any CCA adversary F attacking (gen, enc, dec) we construct a RCCA adversary
F ′ attacking (gen, enc, dec) as follows:

11This is the point in the proof where we use that c1 is encrypted under the symmetric key, as we would not be
able to return the plaintext mb to F .

12Actually, negligibly close to, as we allow the encryption schemes to decrypt incorrectly with a negligible proba-
bility. This opens the possibility that the an incorrect (c1 6= c∗1, c

∗
2) is decrypted by the RCCA game, whereas in the

above game F ′ always return invalid to F .
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1. We assume that F ′ has access to a RCCA game for (gen, enc, dec).

We start be receiving e from the RCCA game.

We then generate uniformly random K ′ ∈ {0, 1}l(k).

2. When F outputs (test messages,m0,m1), where m0 6= m1 then output (test messages,K ′,K∗)
for uniformly random K∗ ∈ {0, 1}l(k) to obtain some ciphertext c∗1. Then compute c∗2 =
EK′(c∗1‖mb′) for uniformly random b′ ∈ {0, 1} and give c∗ = (c∗1, c

∗
2) to F .

3. When F outputs (ciphertext, (c1, c2)), if (c1, c2) = (c∗1, c
∗
2) then input test to F . Otherwise,

output (ciphertext, c1) to the RCCA game to get some value K. If K = test, then let
K = K ′. Then compute c′1‖m = DK(c2). If c′1 = c1, then input m to F , otherwise input
invalid to F .

4. When F outputs (guess, b′), F ′ outputs 1 iff b′ = b. Otherwise, output 0.

If c∗1 = ence(K∗), then the expected value of success(gen,enc,dec)(F ′) is exactly success′
(gen,enc,dec)

(F ).

If on the other hand c∗1 = ence(K ′), then the expected value of success(gen,enc,dec)(F ′) is exactly
success(gen,enc,dec)(F ), unless it happens that F outputs (ciphertext, (c1, c2)) where decd(c1) =
K∗. However, when c∗1 = ence(K ′) the view of F is stochastically independent of K∗ until F
outputs (ciphertext, (c1, c2)) where decd(c1) = K∗. Since K∗ is chosen uniformly at random from
{0, 1}l(k) and F is PPT in k it follows that the probability that F outputs (ciphertext, (c1, c2))
where decd(c1) = K∗ is negligible.

This immediately implies that it is enough to prove that the expected value of success(gen,enc,dec)(F ′)
when b = 0 is negligibly close to the expected value of success(gen,enc,dec)(F ′) when b = 1. This
follows immediately from the RCCA security of (gen, enc, dec). 2

5 Using RCCA security

This section demonstrates the power of RCCA security by proving its sufficiency for several core
applications of public key encryption. Prior proofs for the security of these applications relied
on the CCA security (or, in some cases, on the pd-RCCA security) of the underlying encryption
schemes.

Remark. While RCCA security is adequate for most typical encryption applications, one cannot
consider it as a “drop-in” replacement for all applications of CCA. As pointed out in the introduc-
tion, if an application makes decisions based on the ciphertext strings themselves (e..g compares
them), rather than just using the ciphertexts as inputs to the decryption algorithm, then replacing
CCA with RCCA may not be secure. It is indeed unusual that such examination of the ciphertext
strings is performed by applications, yet this cannot be discounted. An example is a voting scheme
in which (malicious) duplicate votes are detected via ciphertext comparison.

5.1 RCCA suffices for non-interactive secure communication

We demonstrate that RCCA security (with sufficiently large message domain) suffices for realiz-
ing non-interactive secure communication. This is done using the UC characterization of RCCA
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security. More specifically, we recall the protocol, presented in [7], for realizing the secure com-
munication functionality Fm-smt given access to Fpke and authenticated communication. (In other
words, this protocol, denoted σ, operates in the (Fpke,Fauth)-hybrid model.) Protocol σ is non-
interactive in the sense that transmitting an encrypted message does not require the recipient to
send any messages. This stands in contrast with secure communication protocols that are based
on key exchange followed by symmetric encryption.

We demonstrate that protocol σ continues to realize Fm-smt even when the underlying encryption
scheme is only guaranteed to realize Frpke. (In other words, we show that protocol σ realizes Fm-smt

even in the (Frpke,Fauth)-hybrid model.)
We first recall functionality Fm-smt; See Figure 4.13 Fm-smt allows multiple parties to send mul-

tiple messages to a single recipient, while guaranteeing the secrecy and integrity of each encrypted
message independently of all others.

Functionality Fm-smt

Fm-smt proceeds as follows, running on security parameter k, with parties P1, ..., Pn and an adver-
sary S.

1. In the first activation, expect to receive a value (receiver, id) from some party Pi. Then,
send (receiver, id, Pi) to the adversary. From now on, ignore all (receiver, id) values.

2. Upon receiving a value (send, id, m), with m ∈ {0, 1}k, from some party Pj , send (id, Pj ,m)
to Pi and (id, Pj) to the adversary.

Figure 4: The multi-message, multi-sender secure transmission functionality, Fm-smt

Recall the protocol σ from [7] for realizing Fm-smt in the (Fauth,Fpke)-hybrid model. (Hav-
ing access to Fauth means that we assume ideally authenticated communication. As seen below,
this is essential for this solution.) When invoked with input (receiver,id) within party Pi, pro-
tocol σ invokes Fpke with input (KeyGen, id), obtains the public key e and sends (id, e) to all
parties. When activated within party Pj with incoming message (Pi, Pj , (id, e)) from Fauth, party
Pj records the triple (Pi, id, e). From now on, when activated within Pj with input (send,id,m),
the protocol invokes Fpke with input (Encrypt, id, e, (Pj ,m)), obtains a ciphertext c, and invokes
Fauth to send (id, c) from Pj to Pi.14 Finally, when activated within Pi with incoming message
(ciphertext,id,c) from Pj , the protocol invokes Fpke with input (Decrypt, id, c), obtains the
decryption m′, and verifies that m′ is of the form m′ = (Pj ,m). If the verification succeeds, then
the protocol outputs m. Otherwise it outputs nothing.

We stress that the sender incorporates its own identity in the encrypted message, and that the
receiver verifies that the identity in the decrypted message agrees with the identity of the sender.
This precaution is used to prevent copying of messages: Without it, a corrupted party could copy
a ciphertext sent by an uncorrupted party, and re-send it as coming from itself. Such copying of
messages is not allowed by Fm-smt.

13For convenience, use a formulation of Fm-smt which is slightly different from the one in [7] in that we only allow
fixed-size messages.

14For convenience we will assume that the party identifiers, Pj , are elements from {0, 1}k and that the domain
ensemble of Fpke is {0, 1}2k, to allow encrypting the message (Pj , m).
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We now show that running protocol σ in the (Fauth,Frpke)-hybrid model has the same effect
as running this protocol in the (Fauth,Fpke)-hybrid model. (There are no syntactic problems here
since the interface of Frpke with the uncorrupted parties is syntactically the same as the interface
of Fpke.)

Claim 14 Protocol σ securely realizes Fm-smt in the (Fauth,Frpke)-hybrid model.

Proof (sketch): Intuitively, we claim that the relaxation of Fpke to Frpke (i.e., allowing the
adversary to generate new ciphertexts that decrypt to the same values as existing ciphertexts) has
no effect in the context of protocol σ. This is so since each party includes its own identity in each
ciphertext. Thus, assume that some uncorrupted party Pi generates a ciphertext c that decrypts
to (Pi,m), and that some corrupted party manages to generate another ciphertext c′ that decrypts
to the same plaintext. Then, when Pj sends c′, the decryptor will reject c′ since it contains the
wrong sender identity.

We repeat the proof in [7] with the necessary corrections. Let A be an adversary that oper-
ates against parties running σ in the (Fauth,Frpke)-hybrid model. We construct an ideal process
adversary S such that no environment can tell with non-negligible probability whether it is inter-
acting with A and σ in the (Fauth,Frpke)-hybrid model or with S in the ideal process for Fm-smt.
Adversary S runs a simulated copy of A, and proceeds as follows.

1. Whenever S is activated with an input value v from Z, it activates the simulated A with
input v. Whenever A generates an output value v, S writes v on its output tape.

2. Key generation: Initialize a flag g = 0. Then:

(a) Uncorrupted decryptor: When S receives a value (receiver, id, Pi) from Fm-smt, it
checks the value of g. If g = 1 then S does nothing. If g = 0 then S sets g = 1
and activates A with input (KeyGen, id) coming from Frpke. When A returns a value
e, S starts a series of activations of A: for each party Pj , S activates A with a value
(Pi, Pj , (id, e)) coming from Fauth. (Recall that this value means that Pi sent a message
(id, e) to Pj .

(b) Corrupted decryptor: When the simulated A activates Frpke with input (KeyGen, id) in
the name of a corrupted party Pi, S checks the value of g. If g = 1 then S does nothing.
If g = 0 then S sets g = 1, returns (KeyGen, id) to A, and obtains a value e from A.
Next, S has Pi send a value (receiver, id, Pi) to Fm-smt. Finally, when the simulated
A activates Fauth with a value (Pi, Pj , (id, e)), S activates A with a value (Pi, Pj , (id, e))
coming from Fauth.

3. Delivery of the public key: When the simulated A activates some uncorrupted party Pj to
receive a value (Pi, Pj , (id, e′)) coming from Fauth, S activates Pj to receive the message
(receiver, id, Pi) from Fm-smt.

4. Encryption by an uncorrupted party: When S receives a value (id, Pj) from Fm-smt, it checks
whether the value e′ that Pj received in Step 3 equals the value e obtained in Step 2. If e′ 6= e
then S does nothing. (The rationale is that in this case Pi is bound to reject the message
and output nothing.) If e′ = e then S activates A with input (Encrypt, id, e) coming from
Frpke. When A returns a value c, S records the pair (Pj , c) and activates A with a value
(Pj , Pi, (id, c)) coming from Fauth. (If the value c is already recorded then send an error
message to A, just like Frpke would.)
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5. Encryption by a corrupted party: When the simulated A activates Frpke with input (Encrypt,
id, e′,m′) in the name of some corrupted party Pi, and e′ = e, then S returns (Encrypt, id, e′)
to A and obtains c from A. It then records (Pj , c, m

′). If m′ = (Pj ,m) then S activates Fm-smt

with a value (send, id, m) from Pj . (If e′ 6= e then S hands A also the value m′, and does
not record (Pj , c, m

′).) When the simulated A activates Fauth with a value (Pj , Pi, (id, c)), S
activates A with the value (Pj , Pi, (id, c)) sent from Fauth.

6. Decryption by an uncorrupted decryptor: When A invokes party Pi to receive a message
(Pj , Pi, (id, c)) from Pj , S proceeds as follows.

(a) If the pair (Pj , c) has been recorded (i.e., if Pj has sent a message that was associated
with the ciphertext c) then activate Pi to receive the corresponding message from Fm-smt.

(b) If (Pj′ , c) has been recorded for j′ 6= j then do nothing. (The rationale is that in this
case Pi will reject c and output nothing.)

(c) If c was never recorded then hand c to A (in the name of Frpke) for decryption. If
A returns a value (‘ciphertext’, c′) and the pair (Pj , c

′) is recorded, then activate Pi to
receive the corresponding message from Fm-smt. Otherwise, do nothing.

7. Decryption by a corrupted decryptor: When the simulated A activates Frpke with input
(Decrypt, id, c) in the name of a corrupted decryptor Pi, S behaves as Frpke would. That
is, if the pair (Pj , c) was recorded for some Pj then S hands the plaintext (Pj ,m) associated
with c to A. (S knows m since Fm-smt has sent (id, Pj ,m) to the corrupted Pi in the ideal
process.) Otherwise, S hands (Decrypt, id, c) to A. If A returns (‘plaintext’,m) then hand
m to A. If A returns (‘ciphertext’, c′) where (Pj , c

′) is recorded, then S hands the plaintext
m associated with c′ to A.

It can be verified that the view of Z in an interaction with S in the ideal process for Fm-smt is
distributed identically to the view of Z in an interaction with A and σ in the (Fauth,Frpke)-hybrid
model. This holds even for computationally unbounded Z. 2

5.2 RCCA suffices for key-exchange and authenticators

Here we illustrate the power of RCCA security by showing that it suffices to implement secure key
exchange protocols based on public key encryption. Specifically, we show that the encryption-based
key-exchange protocol, enc, from [9] can be proved secure on the assumption that the underlying
encryption scheme is RCCA-secure. This same protocol is shown in [9] to be secure on the basis of
the stronger assumption that the encryption scheme is CCA secure.

We recall the encryption based protocol enc from [9]. Let (gen, enc, dec) be a key-generation,
encryption and decryption algorithm, respectively, of a public-key encryption scheme. Let k be
the security parameter. Assume that each party Pi has invoked gen(k) to get a pair (ei, di) of
encryption and decryption keys, and all parties have the public encryption key ei of the other
parties. The encryption algorithm ence is assumed to work on the message space {0, 1}k where k
is the security parameter. In addition, let {fκ}κ∈{0,1}k be a pseudorandom function family (as in
[14]). The protocol, denoted enc, is described in Figure 5.

The following Theorem is a strengthening of Theorem 9 from [9] where the security of enc is
claimed on the basis of the CCA security of the encryption scheme (gen, enc, dec).
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Protocol enc

Proceed as follows, given security parameter k.

Step 1: The initiator, Pi, on input (Pi, Pj , s), chooses κ
R← {0, 1}k and sends (Pi, s, encej

(κ)) to
Pj . Next, Pi outputs the session key σ = fκ(Pi, Pj , s) under session ID s.

Step 2: Upon receipt of (Pi, s, c) the responder, Pj , computes κ′ = decdj
(c). If the decryption

algorithm does not reject the ciphertext as invalid, then Pj outputs the session key σ′ =
fκ′(Pi, Pj , s) under session ID s.

Figure 5: A ke protocol based on public-key encryption.

Theorem 15 If the encryption (gen, enc, dec) is RCCA-secure and the family {fκ}κ∈{0,1}k is pseu-
dorandom, then protocol enc is SK-secure (without forward secrecy) in the authenticated links model
(am).

For background on the definition of SK-security as a notion of secure key-exchange protocols the
reader is referred to [9]. We note that the am is an idealized model of a perfectly-authenticated
network. In order to convert the protocol enc into a secure key exchange protocol in the realistic
um model (where all communication links are controlled by an active attacker) one can apply to
enc any authenticator [2]. See [9] for the details.

Fortunately, for proving the above theorem we do not need to get into the model and details
of key-exchange protocols. Indeed, [9] prove this theorem by reducing its security to that of an
“encryption game” they define. It is shown that if protocol enc can be broken as a key-exchange
protocol then the game can be won (with non-negligible advantage) by a feasible attacker. On the
other hand, they prove that no such successful attacker against this game can exist if the encryption
scheme is CCA secure. All we have to show is that the same encryption game cannot be won by
a feasible attacker if the encryption scheme is RCCA secure. This is proven next after introducing
the encryption game in Figure 6.

Lemma 16 Assume that the encryption scheme (gen, enc, dec) is RCCA-secure and the family
{fκ}κ∈{0,1}k is pseudorandom. Then if B runs in polynomial-time and never includes the value
t∗ as the t component in the pairs (c, t) queried during Phases 1 and 3, then the probability that B
wins in the above game is no more than 1/2 plus a negligible fraction.

Note: in [9] the condition restricting the queries of B in phases 1 and 3 is more relaxed: namely,
that B is not allowed to query the specific pair (c∗, t∗) in these phases. However, it is easy to
verify that the proof of SK-security in [9] remains correct under the more stringent restriction in
the above Lemma.
Proof: We show how to build a successful IND-RCCA attackerR against the scheme (gen, enc, dec)
based on an attacker B that wins the above game with non-negligible advantage, namely, with
probability 1/2 + ε for some non-negligible function ε.

1. R is given a public key e.

2. R chooses two random and independent keys κ0 and κ1 from {0, 1}k, outputs (test messages, κ0, κ1)
and receives a challenge ciphertext c∗.
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The encryption game

The parties to the game are G and B (for good and bad). G possesses a pair of public and private
keys, e and d (generated via the key generation algorithm gen). B knows e but not d.
The game proceeds in phases:

Phase 0: G provides B with a challenge ciphertext c∗ = ence(κ0) for κ0
R← {0, 1}k.

Phase 1: B sends a pair (c, t) to G who responds with fκ(t) where κ = decd(c). This is repeated
a polynomial (in k) number of times with each pair being chosen adaptively by B (i.e., after
seeing G’s response to previous pairs).

Phase 2: B sends a test string t∗ to G. Then G chooses a random bit b
R← {0, 1}. If b = 0 then

G responds with fκ0(t
∗) where κ0 is the value encrypted by G in phase 0. If b = 1 then G

responds with a random string r of the same length as fκ0(t
∗).

Phase 3: Same as Phase 1.

Phase 4: B outputs a bit b′.

And the winner is... B if and only if b = b′.

Figure 6: A game that captures the SK-security of the key-exchange protocol enc

3. Phase 0: R presents B with public key e and challenge ciphertext c∗.

4. Phase 1: upon query (c, t) from B, R outputs (ciphertext, c) and receives back a value κ.
If κ = test then R responds to B with fκ0(t), otherwise R responds with fκ(t).15

5. Phase 2: upon presentation of a test string t∗ by B, R chooses a bit b∈R {0, 1} and answers
B with the value fκ0(t

∗) if b = 0, and with a random value r of the length of fκ0(t
∗) if b = 1.

6. Phase 3: R responds to B’s queries in phase 3 exactly as in phase 1.

7. Phase 4: when B outputs a bit b′, R outputs 0 if b′ = b and outputs 1 otherwise.

We finish the proof of Lemma 16 by proving the following claim.

Claim 17 If in the above run of R, its encryption oracle chooses

1. c∗ = ence(κ0) then the probability that B guesses b is 1/2 + ε − q2−k where q is the number
of queries made by B.

2. c∗ = ence(κ1) then the probability that B guesses b is at most 1/2 + εprf + 2−k where εprf is
the distinguishing probability of some feasible attacker against the family {fκ}κ∈{0,1}k and so
is negligible.

From this claim the Lemma follows since the advantage of R is

|Prob(R outputs 0 : c∗ = ence(κ0))− Prob(R outputs 0 : c∗ = ence(κ1))|
15Here and in the sequel we will assume for simplicity that if the response from the decryption oracle is κ = invalid

then fκ(t) also returns invalid.
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= |Prob(B guesses b : c∗ = ence(κ0))− Prob(B guesses b : c∗ = ence(κ1))|
≥ |1/2 + ε− q2−k − 1/2− εprf − 2−k| = |ε− εprf − (q + 1)2−k|

which is non-negligible since we assumed ε to be non-negligible (while εprf and (q + 1)2−k are
negligible).
We proceed to prove the claim.
Proof of 1: In this case, the inputs from R to B have the same probability distribution than those
that the oracle G would have provided to B under a regular run of the game with keys e and d,
except if in the interaction between B and R the former asks a query in which c = ence(κ1). In
this case R answers fκ0(t) (since its decryption oracle returns test) while G would have answered
fκ1(t). The probability of this event, however, is 2−k for each such query since the value κ1 is
random and independent from the view of B. Thus, the probability of B to win the game is at least
1/2 + ε− q2−k where q is the number of queries made by B.

Proof of 2: Assume that when c∗ = ence(κ1), B wins with probability 1/2+ε′. We show how to build
a distinguisher F against the family {fκ}κ∈{0,1}k that succeeds with advantage εprf = ε′− 2−k and
thus ε′ = εprf +2−k as claimed. The distinguisher F has access to a function oracle f∗, implemented
either by a random member of the pseudorandom family, or by a completely random function of
the same output length. The idea is for F to simulate a run of R and B in which c∗ = ence(κ1),
but to replace the responses of R of the form fκ0(t) with responses f∗(t) received from its function
oracle.

Specifically, F starts by generating a pair of public/private keys (e, d) under scheme (gen, enc, dec),
and producing a ciphertext c∗ = ence(κ1) for a randomly chosen element κ1 ∈R {0, 1}k. It then
activates B with public key e and challenge ciphertext c∗. B’s queries (c, t) in phases 1 and 3 are
answered by F by first computing κ = decd(c) and then responding with f∗(t) if κ = κ1, and with
fκ(t) otherwise. When B sends its test string t∗ in phase 2, F chooses a random bit b and responds
as follows. If b = 0 then F returns f∗(t∗), else F returns a random r. Finally, F outputs the same
bit b′ as B does.

We claim that if f∗ is a pseudorandom function fκ0 (for random κ0 ∈ {0, 1}k) then the behavior
of B in the interaction with F is identical to its behavior in the game with R when c∗ = ence(κ1)
as long as the value κ1 chosen by F is different than the key κ0 used by the pseudorandom function
f∗ (a condition that fails with only negligible probability 2−k). Indeed, for any query (c, t) by B
in which c decrypts to a value something different than κ0 or κ1 the response of both F and R is
fκ(t). While if c decrypts to either κ0 or κ1 (the “test” case under R), the response of both R and
F is fκ0(t) (note that in both cases κ0 is random over {0, 1}k \ {κ1}). Thus, in this case, B guesses
the bit b correctly with probability 1/2 + ε′ − 2−k.
If f∗ uses a random function then the answers to the test string t∗ under b = 0 and b = 1 are
both random and independent from any other value in the game (here we are using the fact that
t∗ 6= t for all other values t queried during the game). Thus, in this case, B guesses b correctly with
probability 1/2.

In all, we get that the advantage of F to distinguish a random f∗ from a randomly chosen
pseudorandom function f∗ is εprf = 1/2 + ε′ − 2−k − 1/2 = ε′ − 2−k. 2

Remark. A very similar proof as that of Lemma 16 can be used to prove the encryption-based
authenticator from [2].
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5.3 RCCA suffices for encrypted password authentication

Password authentication is very common in practice. Its typical application is for authenticating
a (human) user sitting at some remote client machine (a terminal, laptop, etc.) to a centralized
authentication server. The most common weakness of password authentication mechanisms is its
vulnerability to dictionary attacks in which an eavesdropper can use the authentication information
sent over the network to derive the user’s password by exhaustive search over a given password
dictionary of relatively small size (say, one million passwords which with significant probability
includes the user’s password). Methods for avoiding dictionary attacks against password-only
attacks exist ([5] and the many subsequent papers in this area). One particular setting which is
widespread in practice is one in which the server has a public encryption key e and a corresponding
private decryption key d for some public-key encryption scheme S. The user (or, more typically, its
client machine) has the public key e (either e is already stored at the client, or it is sent from the
server together with a certificate that the client can verify). Both server and user share a secret
password (usually memorized by the user).

This setting is prevalent in the Web (where the password information is usually sent under the
protection of a server-authenticated SSL tunnel), in IPsec’s remote access, in SSH (secure shell),
etc.

This setting was formally studied in [16] who prove that the simple encryption of the pass-
word (with other user/server identification information) and some fresh information (such as a
unique session id) under a public key encryption scheme ensures secure password authentication
provided that the encryption scheme is CCA-secure. More generally, they show that a wider family
of protocols, named Encrypted Challenge-Response protocols, provides secure one-way password
authentication16 if the encryption is CCA-secure. Their notion of secure password authentication
guarantees that the attacker’s best strategy is the trivial (and unavoidable) one: trying all pos-
sible passwords in active impersonation attacks against the server until the corresponding user’s
password is found (this is not only time consuming for the attacker but well designed systems
will invalidate the attacked user’s password after a relatively small number of failed authentication
trials).

Here we show that the results from [16] hold also if the encryption scheme is RCCA (without
requiring any change to the protocols from [16]). For the full details on the notion of password
authentication security, and the Encrypted Challenge-Response protocol and its derivatives, the
reader is referred to [16]. We have:

Theorem 18 The Encrypted Challenge-Response protocol from [16] provides secure one-way pass-
word authentication if the public key encryption scheme is IND-RCCA secure.

For stating and proving their result [16] define a notion of public-key encryption security against
ciphertext-verification attacks which is implied by CCA security but is strictly stronger than RCCA.
This notion is presented below and we will refer to it as IND-CVA. The proof of the above theorem
consists of proving that a relaxed notion, that we call IND-RCVA, and which is implied by IND-
RCCA, is sufficient to guarantee the security of the Encrypted Challenge-Response protocol. We
proceed to present first the definition of IND-CVA from [16] and then introduce our relaxed variant
IND-RCVA.

16“one-way authentication” refers to the fact that these protocols provide client authentication only. [16] also shows
how to expand these protocols to provide mutual authentication and authenticated key exchange.
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Definition 19 (IND-CVA [16]) Let S = (gen, enc, dec) be a public-key encryption scheme. A
ciphertext-verification attack is defined via the following game, which involves the scheme S and an
adversary A.

1. The key-generation algorithm is run (with security parameter k) to generate a secret/public
key pair, (d, e). The adversary A is given the public key e.

2. The adversary adaptively generates queries (xi, ci), which we call verification queries. For
each verification query (xi, ci) the adversary is told whether or not xi = decd(ci).

3. The adversary generates a pair of plaintexts m0,m1 of the same length, and asks for an
encryption of one of them. Below we call this the test query of A. With probability 1/2, A
gets an answer c = ence(m0), and with probability 1/2 it gets c = ence(m1).

4. The adversary may adaptively generate more verification queries (xi, ci), subject to the con-
straint that ci 6= c. Again, for each verification query (xi, ci), the adversary is told whether
or not xi = decd(ci).

5. The adversary A guesses whether c is an encryption of m0 or of m1.
We say that A wins the game if it guesses correctly.

An encryption scheme S is said to be secure against ciphertext-verification attacks (IND-CVA) if
the probability of any polynomial-time adversary A to win the above game is no more that 1/2 plus
a negligible fraction.

Our relaxation of this notion is as follows

Definition 20 (IND-RCVA) Let S = (gen, enc, dec) be an encryption scheme as above. A re-
laxed ciphertext-verification attack is defined via the game in Definition 19 with the following mod-
ification. The constraint in Step 4 is changed such that the attacker is not allowed to query pairs
(xi, ci) where xi ∈ {m0,m1}. The scheme S is called secure against relaxed ciphertext-verification
attacks (IND-RCVA) if the probability of any polynomial-time adversary A to win the game is no
more that 1/2 plus a negligible fraction.

Proof of Theorem 18: Since IND-RCVA is implied by IND-RCCA it suffices to show that
any efficient successful attacker against the security of the Encrypted Challenge-Response protocol
(as a one-way authentication protocol) can be converted into an IND-RCVA attacker against S.
The proof is almost identical to the proof in [16]. It only requires a slight modification in the
argument of the proof of Lemma 5 of that paper which builds an IND-CVA attacker A against the
encryption scheme S given an attacker I that breaks the Encrypted Challenge-Response protocol.
The required observation in our setting is that the attacker A built in [16] is already an IND-
RCVA attacker, namely, it never issues a verification query with a plaintext equal to one of the
test messages. This can be seen by inspecting the description of the attacker A in the proof of
Lemma 5 in [16]. (For the benefit of the interested reader, the specific points to observe in the
description of A in [16] are that the test messages chosen in step (2) of A’s run are of the form
wt = f(spwd ;U,S, sid′t) and w̄t = f(0; 0). The verification queries issued in step (3) are of the form
zi = f(spwd′;U′,S, sid′) with U′ 6= U and therefore different from wt and w̄t (here we use the fact
that f is assumed to be “one-to-one on its components”). The one additional verification query
from step (4) is z = f(spwd ;U,S, sid) which is also different from wt and w̄t due to the fact that
sid′t 6= sid.) 2
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Remark. In [16] the basic Encrypted Challenge-Response protocol is extended to provide mutual
authentication and key exchange also using public-key encryption mechanisms. In [16] these pro-
tocols are based on CCA security, however we note that they can be shown to hold under RCCA
security using the results from Section 5.2.

5.4 RCCA hybrid encryption

Public key encryption is often too slow for encrypting long messages. As a consequence the regular
way to encrypt long messages (e.g. email) uses the so called hybrid encryption method (also called
the “envelope method”) in which a PK encryption scheme is used to encrypt a symmetric key
and this key used to encrypt the message under a symmetric-key encryption scheme. Hybrid
encryption schemes can be made to be CCA-secure if the PK encryption scheme in use is CCA-
secure. One well-known method is as follows. Let penc be a public-key encryption scheme, senc
be a symmetric-key encryption scheme, and mac be a MAC algorithm. For any plaintext m define
eem(m) = (c1, c2, c3) where c1 = pence(κ1, κ2), c2 = sencκ1(m), c3 = macκ2(c2) where κ1, κ2 are
random keys (chosen by the encryptor) for the schemes senc and mac, respectively. If penc is
CCA-secure, senc is semantically secure against chosen-plaintext attacks (CPA), and mac is a
strong17 MAC function, then eem is CCA-secure. Here we show that the scheme eem constitutes
an RCCA-secure public-key encryption scheme provided that penc is RCCA-secure, senc is secure
against chosen-plaintext attacks, and mac is a regular secure MAC function (i.e. no need for the
“strong” property). Actually, we will show a more general result:

Theorem 21 If penc is an RCCA-secure public-key encryption scheme and senc an IND-RCCA
secure symmetric encryption scheme then the hybrid scheme henc defined as henc(m) = (penc(k), senck(m)),
where k is a random key for the scheme senc, is RCCA-secure (as a public-key encryption scheme).

Note that this Theorem uses the notion of IND-RCCA security for symmetric encryption. Next
we sketch such a definition as a simple adaptation of the IND-RCCA notion from Section 3.2 to
the symmetric-key setting. The only difference with the public key case is that in the symmetric
key scenario the attacker is not provided with an encryption key but with access to an encryption
oracle. As in the public-key case the attacker also has access to a decryption oracle. Both oracles
provide their responses using the same (random and unknown to the attacker) key; in particular,
on input a ciphertext produced by the encryption oracle on message m, the decryption oracle will
output m. The definition of IND-RCCA remains unchanged from the public key case except for
the addition of the encryption oracle. There are no restriction on the messages that the attacker
can query from the encryption oracle or the decryption oracle. The test message query from the
attacker is answered by the encryption oracle by returning the ciphertext of one of the two test
messages (chosen at random by the oracle). After a test message query is issued by the attacker, any
ciphertext presented to the decryption oracle that decrypts to one of the test messages is answered
with test. The attacker wins the game if it guesses correctly which test message was encrypted.

A simple example of an IND-RCCA secure symmetric encryption scheme is given by the
“encrypt-then-authenticate” paradigm: it is easy to show that the symmetric encryption scheme
EtA(κ1,κ2)(m) = (c1, c2), where c1 = sencκ1(m) and c2 = macκ2(c1) is IND-RCCA secure if senc is
secure against chosen-plaintext attacks (CPA), and mac is a regular (not necessarily strong) secure

17The term “strong MAC” refers to a strengthening of the regular notion of MAC security, namely, in addition
to the standard security notion against chosen message attacks, it is required that given pairs of messages and their
mac values, it is infeasible to find a different valid mac value for any of these messages.

33



MAC function. Thus, the above theorem proves, in particular, that the hybrid public-key encryp-
tion scheme eem discussed above is RCCA-secure if penc is RCCA-secure, senc is CPA-secure,
and mac a (regularly) secure MAC function.
Proof (sketch): The proof of Theorem 21 is very similar in spirit to the proof of Lemma 16. We
describe the main elements of the proof here. LetH be an adversary that wins the IND-RCCA game
against the scheme henc with non-negligible advantage εH . We build an IND-RCCA adversary P
which wins the IND-RCCA game against the public-key encryption scheme penc with the same
advantage up to a negligible difference. We assume that the encryption senc uses keys of length
k, and that penc is capable of encrypting strings of length k.

1. P is given a public key e.

2. P chooses two random and independent keys κ0 and κ1 from {0, 1}k, outputs (test messages, κ0, κ1)
and receives a challenge ciphertext c∗.

3. P runs H with public key e.

4. Upon ciphertext query (c, t) from H, P outputs (ciphertext, c) and receives back a value κ.
If κ = test then P responds to H with senc−1

κ0
(t), otherwise P responds with senc−1

κ (t) (if
κ = invalid or senc−1

κ (t) = invalid then P returns invalid).

5. Upon presentation of a pair of test messages m0,m1 by H, P chooses a bit b∈R {0, 1} and
answers H with the ciphertext (c∗, sencκ0(mb)).

6. When H outputs a bit b′, P outputs 0 if b′ = b and outputs 1 otherwise.

We finish the proof of the theorem by proving the following claim.

Claim 22 If in the above run of P, its encryption oracle chooses

1. c∗ = pence(κ0) then the probability that H guesses b is 1/2+εH−q2−k where q is the number
of ciphertext queries made by H.

2. c∗ = pence(κ1) then the probability that H guesses b is at most 1/2 + εs + 2−k where εs is
the advantage of some feasible attacker against the IND-RCCA security of scheme senc.

From this claim the Theorem follows since the advantage of P is

|Prob(P outputs 0 : c∗ = pence(κ0))− Prob(P outputs 0 : c∗ = pence(κ1))|
= |Prob(H guesses b : c∗ = pence(κ0))− Prob(H guesses b : c∗ = pence(κ1))|
≥ |1/2 + εH − q2−k − 1/2− εs − 2−k| = |εH − εs − (q + 1)2−k|

which is non-negligible since we assumed εH to be non-negligible and εs to be negligible.
Thus it only remains to prove the claim which (again) is an adaptation of the proof of Claim 17.
Proof of 1: In this case, the inputs from P to H have (almost) the same probability distribution
than those that would have been generated by the oracles of H under a regular run of its IND-
RCCA game against the henc scheme with keys e and d. The only exception is if in the interaction
between H and P the former asks a ciphertext query (c, t) in which c = pence(κ1). In this case P
answers senc−1

κ0
(t) (since its decryption oracle returns test) while a real henc decryption oracle

would have answered senc−1
κ1

(t). The probability of this event, however, is 2−k for each such query
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since the value κ1 is random and independent from the view of H. Thus, the probability of H to
win the game in its interaction with P is at least 1/2 + εH − q2−k where q is the number of queries
made by H.

Proof of 2: Assume that when c∗ = pence(κ1), H wins with probability 1/2 + ε′. We show how to
build a IND-RCCA attacker S against the symmetric scheme senc that succeeds with advantage
ε′ − 2−k and thus ε′ ≤ εs + 2−k as claimed. The attacker S has access to a pair of encryption and
decryption oracles for senc, denoted Oenc and Odec, respectively. The idea is for S to simulate a
run of P and H in which c∗ = pence(κ1), but to replace the responses of P of the form senc−1

κ0
(t)

with Odec(t) (i.e., the result returned by the decryption oracle of S on input t).
Specifically, S starts by generating a pair of public/private keys (e, d) under scheme penc,

and producing a ciphertext c∗ = pence(κ1) for a randomly chosen element κ1 ∈R {0, 1}k. It then
activates H with public key e. H’s ciphertext queries (c, t) are answered by S by first decrypting
c using the private key d to obtain a plaintext κ, and then responding with Odec(t) if κ = κ1, and
with senc−1

κ (t) otherwise (we omit the straightforward details of dealing with invalid ciphertexts).
When H presents its test messages m0,m1, S uses these as its own test messages with Oenc. Then,
the response from S to H’s test messages is the ciphertext (c∗, t∗), where t∗ denotes the response
from Oenc to S’s test. Finally, S outputs the same bit b′ as H does.

We claim that the behavior of H in the interaction with S is identical to its behavior in the
game with P when c∗ = pence(κ1) as long as the value κ1 chosen by S is different than the key,
which we denote by κ0, used by the oracles Oenc and Odec (a condition that fails with only negligible
probability 2−k). Indeed, for any query (c, t) by H in which c decrypts to a value κ different than
κ0 or κ1 the response of both S and P is senc−1

κ (t). While if c decrypts to either κ0 or κ1 (the
test case under P), the response of both P and S is senc−1

κ0
(t) (in the former case κ0 is the key

chosen by P, in the later, it is the Odec key; in both cases κ0 is random over {0, 1}k \ {κ1}). Also,
the response to H for its test query is (c∗, sencκ0(mb)) for random b in the interaction with P
and in the interaction with S. Thus, in this case, H guesses the bit b correctly with probability
εs = 1/2 + ε′ − 2−k and so does S. In other words, the advantage of H is at most ε′ = εs + 2−k,
where εs is negligible as S is a legitimate IND-RCCA attacker against senc. 2

6 Open Questions

The new notions and results in this paper leave some questions open. Here we mention some.

1. Are NM-RCCA and UC-RCCA equivalent for polynomial-size message spaces?

2. Can RCCA be further relaxed and still provide a useful general notion of security against
active attackers?

3. Can we build significantly-more-practical (or simpler, or based on more relaxed specific as-
sumptions, etc) RCCA-secure schemes than CCA-secure ones?

4. Are there schemes that are RCCA but not sd-RCCA?

5. Are there “randomizable RCCA schemes”? (see Remark 12). This question is related to
questions 1 and 4. If there exists “randomizable RCCA schemes”, then question 4 is answered
in the affirmative. If furthermore such a scheme has polynomial-size message space and invalid
ciphertexts can be efficiently recognized given just the public key, then question 1 is answered
in the negative.
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6. Are there “natural” schemes that are sd-RCCA but not pd-RCCA?
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