Principo de kuniklo
Aspekto
En matematiko, la kunikloprincipo deklaras ke se eroj estas metitaj en ujojn, kun , tiam almenaŭ unu ujo devas enhavi pli ol unu objekton. [1] Ekzemple, el tri gantoj (neniu el kiuj estas ambidekstra/reversebla), almenaŭ du devas esti dekstramanaj aŭ almenaŭ du devas esti maldekstramanaj, ĉar estas tri objektoj sed nur du kategorioj de maneco por meti ilin. Ĉi tiu ŝajne evidenta aserto, speco de kalkula argumento, povas esti uzata por montri eble neatenditajn rezultojn. Ekzemple, konsiderante ke la loĝantaro de Londono estas pli granda ol la maksimuma nombro da haroj kiuj povas esti sur la kapo de homo, la principo postulas ke devas ekzisti almenaŭ du homoj en Londono kiuj havas la saman nombron da haroj sur siaj kapoj.
Referencoj
[redakti | redakti fonton]- ↑ Herstein 1964, p. 90
Bibliografio
[redakti | redakti fonton]- Herstein, I. N. (1964), Topics In Algebra, Waltham: Blaisdell Publishing Company, ISBN 978-1114541016