Jump to content

Toxicofera

From Wikipedia, the free encyclopedia
(Redirected from Venom clade)

Toxicoferans
Temporal range: BathonianPresent[1]
Venomous snakes, such as the rattlesnake shown above, are the best-known venomous squamates
Scientific classification Edit this classification
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Class: Reptilia
Order: Squamata
Clade: Toxicofera
Vidal & Hedges, 2005
Subgroups
Synonyms

Pythonomorpha?

Toxicofera (Greek for "those who bear toxins") is a proposed clade of scaled reptiles (squamates) that includes the Serpentes (snakes), Anguimorpha (monitor lizards, beaded lizards, and alligator lizards) and Iguania (iguanas, agamas, and chameleons). Toxicofera contains about 4,600 species (nearly 60%) of extant Squamata.[2] It encompasses all venomous reptile species, as well as numerous related non-venomous species. There is little morphological evidence to support this grouping; however, it has been recovered by all molecular analyses as of 2012.[3][4][5][needs update]

Cladistics

[edit]

Toxicofera combines the following groups from traditional classification:[2]

The relationship between these extant groups and a couple of extinct taxa are shown in the following cladogram, which is based on Reeder et al. (2015; Fig. 1).[6]

Toxicofera

Alongside these groups, Mosasauria, an extinct group including large marine reptiles primarily known from the Late Cretaceous, has been placed as part of the group. It has often been supposed that mosasaurs are most closely related to snakes, with the group containing the two dubbed Pythonomorpha, however, other studies have quesitioned this, finding that the closest relatives of mosasaurs are members of Varanoidea.[7] Polyglyphanodontia, a group of extinct herbivorous lizards known from the Cretaceous, have also been placed as part of this group in some studies as the sister group to Iguania, though other studies have instead suggested that they are most closely related to Teiioidea and thus placed outside Toxicofera.[8]

Venom

[edit]

Venom in squamates has historically been considered a rarity; while it has been known in Serpentes since ancient times, the actual percentage of snake species considered venomous was relatively small (around 25%).[9] Of the approximately 2,650 species of advanced snakes (Caenophidia), only the front-fanged species (~650) were considered venomous by the anthropocentric definition. Following the classification of Helodermatidae in the 19th century, their venom was thought to have developed independently.[2] In snakes, the venom gland is in the upper jaw, but in helodermatids, it is found in the lower jaw.[2] The origin of venom in squamates was thus considered relatively recent in evolutionary terms and the result of convergent evolution among the seemingly-polyphyletic venomous snake families.[citation needed]

In 2003 a study was published that described venom in snake subfamilies previously thought to lack it.[10] Further study claimed nearly all "non-venomous" snakes produce venom to a certain extent, suggesting a single, and thus far more ancient origin for venom in Serpentes than had been considered until then.[11][12] As a practical matter, Fry cautioned:[13]

Some non-venomous snakes have been previously thought to have only mild 'toxic saliva'. But these results suggest that they actually possess true venoms. We even isolated from a rat snake [Coelognathus radiatus (formerly known as Elaphe radiata)[11]], a snake common in pet stores, a typical cobra-style neurotoxin, one that is as potent as comparative toxins found in close relatives of the cobra. These snakes typically have smaller quantities of venom and lack fangs, but they can still deliver their venom via their numerous sharp teeth. But not all of these snakes are dangerous. It does mean, however, that we need to re-evaluate the relative danger of non-venomous snakes.

This prompted further research, which led to the discovery of venom (and venom genes) in species from groups which were not previously known to produce it, e.g. in Iguania (specifically Pogona barbata from the family Agamidae) and Varanidae (from Varanus varius).[2] It is thought that this was the result of descent from a common venom-producing squamate ancestor; the hypothesis was described simply as the "venom clade" when first proposed to the scientific community.[2] The venom clade included Anguidae for phylogenetic reasons and adopted a previously suggested clade name: Toxicofera.[14]

It was estimated that the common ancestral species that first developed venom in the venom clade lived on the order of 200 million years ago.[2] The venoms are thought to have evolved after genes normally active in various parts of the body duplicated and the copies found new use in the salivary glands.[10]

Among snake families traditionally classified as venomous, the capacity seems to have evolved to extremes more than once by parallel evolution; 'non-venomous' snake lineages have either lost the ability to produce venom (but may still have lingering venom pseudogenes) or actually do produce venom in small quantities (e.g. 'toxic saliva'), likely sufficient to assist in small prey capture, but not normally causing harm to humans if bitten.[citation needed]

The newly discovered diversity of squamate species producing venoms is a treasure trove for those seeking to develop new pharmaceutical drugs; many of these venoms lower blood pressure, for example.[2] Previously known venomous squamates have already provided the basis for medications such as Ancrod, Captopril, Eptifibatide, Exenatide and Tirofiban.[citation needed]

The world's largest venomous lizard and the largest species of venomous land animal is the Komodo dragon.[15]

Criticism

[edit]

Other scientists such as Washington State University biologist Kenneth V. Kardong and toxicologists Scott A. Weinstein and Tamara L. Smith, have stated that the allegation of venom glands found in many of these animals "has had the effect of underestimating the variety of complex roles played by oral secretions in the biology of reptiles, produced a very narrow view of oral secretions and resulted in misinterpretation of reptilian evolution". According to these scientists "reptilian oral secretions contribute to many biological roles other than to quickly dispatch prey". These researchers concluded that, "Calling all in this clade venomous implies an overall potential danger that does not exist, misleads in the assessment of medical risks, and confuses the biological assessment of squamate biochemical systems".[16] More recently, it has been suggested that many of the shared toxins that underlie the Toxicofera hypothesis are in fact not toxins at all.[17]

References

[edit]
  1. ^ Marjanović, D. (2021). "The Making of Calibration Sausage Exemplified by Recalibrating the Transcriptomic Timetree of Jawed Vertebrates". Frontiers in Genetics. 12. 521693. doi:10.3389/fgene.2021.521693. PMC 8149952. PMID 34054911.
  2. ^ a b c d e f g h Fry, Bryan G.; Vidal, Nicolas; Norman, Janette A.; Vonk, Freek J.; Scheib, Holger; Ramjan, S. F. Ryan; Kuruppu, Sanjaya; Fung, Kim; Blair Hedges, S.; Richardson, Michael K.; Hodgson, Wayne. C.; Ignjatovic, Vera; Summerhayes, Robyn; Kochva, Elazar (2005). "Early evolution of the venom system in lizards and snakes". Nature. 439 (7076): 584–8. Bibcode:2006Natur.439..584F. doi:10.1038/nature04328. PMID 16292255. S2CID 4386245.584-8&rft.date=2005&rft_id=info:doi/10.1038/nature04328&rft_id=https://api.semanticscholar.org/CorpusID:4386245#id-name=S2CID&rft_id=info:pmid/16292255&rft_id=info:bibcode/2006Natur.439..584F&rft.aulast=Fry&rft.aufirst=Bryan G.&rft.au=Vidal, Nicolas&rft.au=Norman, Janette A.&rft.au=Vonk, Freek J.&rft.au=Scheib, Holger&rft.au=Ramjan, S. F. Ryan&rft.au=Kuruppu, Sanjaya&rft.au=Fung, Kim&rft.au=Blair Hedges, S.&rft.au=Richardson, Michael K.&rft.au=Hodgson, Wayne. C.&rft.au=Ignjatovic, Vera&rft.au=Summerhayes, Robyn&rft.au=Kochva, Elazar&rfr_id=info:sid/en.wikipedia.org:Toxicofera" class="Z3988">
  3. ^ Vidal, Nicolas; Hedges, S. Blair (2009). "The molecular evolutionary tree of lizards, snakes, and amphisbaenians". Comptes Rendus Biologies. 332 (2–3): 129–39. doi:10.1016/j.crvi.2008.07.010. PMID 19281946. S2CID 23137302.2–3&rft.pages=129-39&rft.date=2009&rft_id=https://api.semanticscholar.org/CorpusID:23137302#id-name=S2CID&rft_id=info:pmid/19281946&rft_id=info:doi/10.1016/j.crvi.2008.07.010&rft.aulast=Vidal&rft.aufirst=Nicolas&rft.au=Hedges, S. Blair&rft_id=https://comptes-rendus.academie-sciences.fr/biologies/articles/10.1016/j.crvi.2008.07.010/&rfr_id=info:sid/en.wikipedia.org:Toxicofera" class="Z3988">
  4. ^ Pyron, R.; Burbrink, Frank T.; Wiens, John J. (2013). "A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes". BMC Evolutionary Biology. 13 (1): 93. Bibcode:2013BMCEE..13...93P. doi:10.1186/1471-2148-13-93. PMC 3682911. PMID 23627680.
  5. ^ Wiens, J. J.; Hutter, C. R.; Mulcahy, D. G.; Noonan, B. P.; Townsend, T. M.; Sites, J. W.; Reeder, T. W. (2012). "Resolving the phylogeny of lizards and snakes (Squamata) with extensive sampling of genes and species". Biology Letters. 8 (6): 1043–6. doi:10.1098/rsbl.2012.0703. PMC 3497141. PMID 22993238.1043-6&rft.date=2012&rft_id=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3497141#id-name=PMC&rft_id=info:pmid/22993238&rft_id=info:doi/10.1098/rsbl.2012.0703&rft.aulast=Wiens&rft.aufirst=J. J.&rft.au=Hutter, C. R.&rft.au=Mulcahy, D. G.&rft.au=Noonan, B. P.&rft.au=Townsend, T. M.&rft.au=Sites, J. W.&rft.au=Reeder, T. W.&rft_id=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3497141&rfr_id=info:sid/en.wikipedia.org:Toxicofera" class="Z3988">
  6. ^ Reeder, Tod W.; Townsend, Ted M.; Mulcahy, Daniel G.; Noonan, Brice P.; Wood, Perry L.; Sites, Jack W.; Wiens, John J. (2015). "Integrated Analyses Resolve Conflicts over Squamate Reptile Phylogeny and Reveal Unexpected Placements for Fossil Taxa". PLOS One. 10 (3): e0118199. Bibcode:2015PLoSO..1018199R. doi:10.1371/journal.pone.0118199. PMC 4372529. PMID 25803280.
  7. ^ Polcyn, Michael J.; Augusta, Bruno G.; Zaher, Hussam (2022-08-11), Gower, David J.; Zaher, Hussam (eds.), "Reassessing the Morphological Foundations of the Pythonomorph Hypothesis", The Origin and Early Evolutionary History of Snakes (1 ed.), Cambridge University Press, pp. 125–156, doi:10.1017/9781108938891.010, ISBN 978-1-108-93889-1, retrieved 2024-01-20125-156&rft.date=2022-08-11&rft_id=info:doi/10.1017/9781108938891.010&rft.isbn=978-1-108-93889-1&rft.aulast=Polcyn&rft.aufirst=Michael J.&rft.au=Augusta, Bruno G.&rft.au=Zaher, Hussam&rft_id=https://www.cambridge.org/core/product/identifier/9781108938891%23CN-bp-7/type/book_part&rfr_id=info:sid/en.wikipedia.org:Toxicofera" class="Z3988">
  8. ^ Xing, Lida; Niu, Kecheng; Evans, Susan E. (January 2023). "A new polyglyphanodontian lizard with a complete lower temporal bar from the Upper Cretaceous of southern China". Journal of Systematic Palaeontology. 21 (1). Bibcode:2023JSPal..2181494X. doi:10.1080/14772019.2023.2281494. ISSN 1477-2019.
  9. ^ Fry, Bryan G.; Vidal, Nicolas; Van Der Weerd, Louise; Kochva, Elazar; Renjifo, Camila (2009). "Evolution and diversification of the Toxicofera reptile venom system". Journal of Proteomics. 72 (2): 127–36. doi:10.1016/j.jprot.2009.01.009. PMID 19457354.127-36&rft.date=2009&rft_id=info:doi/10.1016/j.jprot.2009.01.009&rft_id=info:pmid/19457354&rft.aulast=Fry&rft.aufirst=Bryan G.&rft.au=Vidal, Nicolas&rft.au=Van Der Weerd, Louise&rft.au=Kochva, Elazar&rft.au=Renjifo, Camila&rfr_id=info:sid/en.wikipedia.org:Toxicofera" class="Z3988">
  10. ^ a b Fry, B. G.; Wüster, W.; Kini, R. M.; Brusic, V.; Khan, A.; Venkataraman, D.; Rooney, A. P. (2003). "Molecular Evolution and Phylogeny of Elapid Snake Venom Three-Finger Toxins". Journal of Molecular Evolution. 57 (1): 110–29. Bibcode:2003JMolE..57..110F. CiteSeerX 10.1.1.539.324. doi:10.1007/s00239-003-2461-2. PMID 12962311. S2CID 12358977.110-29&rft.date=2003&rft_id=https://api.semanticscholar.org/CorpusID:12358977#id-name=S2CID&rft_id=info:bibcode/2003JMolE..57..110F&rft_id=https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.539.324#id-name=CiteSeerX&rft_id=info:pmid/12962311&rft_id=info:doi/10.1007/s00239-003-2461-2&rft.aulast=Fry&rft.aufirst=B. G.&rft.au=Wüster, W.&rft.au=Kini, R. M.&rft.au=Brusic, V.&rft.au=Khan, A.&rft.au=Venkataraman, D.&rft.au=Rooney, A. P.&rfr_id=info:sid/en.wikipedia.org:Toxicofera" class="Z3988">
  11. ^ a b Fry, Bryan G.; Lumsden, Natalie G.; Wüster, Wolfgang; Wickramaratna, Janith C.; Hodgson, Wayne C.; Manjunatha Kini, R. (2003). "Isolation of a Neurotoxin (α-colubritoxin) from a Nonvenomous Colubrid: Evidence for Early Origin of Venom in Snakes". Journal of Molecular Evolution. 57 (4): 446–52. Bibcode:2003JMolE..57..446F. doi:10.1007/s00239-003-2497-3. PMID 14708577. S2CID 21055188.446-52&rft.date=2003&rft_id=info:doi/10.1007/s00239-003-2497-3&rft_id=https://api.semanticscholar.org/CorpusID:21055188#id-name=S2CID&rft_id=info:pmid/14708577&rft_id=info:bibcode/2003JMolE..57..446F&rft.aulast=Fry&rft.aufirst=Bryan G.&rft.au=Lumsden, Natalie G.&rft.au=Wüster, Wolfgang&rft.au=Wickramaratna, Janith C.&rft.au=Hodgson, Wayne C.&rft.au=Manjunatha Kini, R.&rfr_id=info:sid/en.wikipedia.org:Toxicofera" class="Z3988">
  12. ^ Fry, B. G.; Wüster, W (2004). "Assembling an Arsenal: Origin and Evolution of the Snake Venom Proteome Inferred from Phylogenetic Analysis of Toxin Sequences". Molecular Biology and Evolution. 21 (5): 870–83. doi:10.1093/molbev/msh091. PMID 15014162.870-83&rft.date=2004&rft_id=info:doi/10.1093/molbev/msh091&rft_id=info:pmid/15014162&rft.aulast=Fry&rft.aufirst=B. G.&rft.au=Wüster, W&rft_id=https://doi.org/10.1093%2Fmolbev%2Fmsh091&rfr_id=info:sid/en.wikipedia.org:Toxicofera" class="Z3988">
  13. ^ "Venom Hunt Finds 'Harmless' Snakes A Potential Danger". ScienceDaily. December 16, 2003.
  14. ^ Vidal, Nicolas; Hedges, S. Blair (2005). "The phylogeny of squamate reptiles (lizards, snakes, and amphisbaenians) inferred from nine nuclear protein-coding genes". Comptes Rendus Biologies. 328 (10–11): 1000–8. doi:10.1016/j.crvi.2005.10.001. PMID 16286089.10–11&rft.pages=1000-8&rft.date=2005&rft_id=info:doi/10.1016/j.crvi.2005.10.001&rft_id=info:pmid/16286089&rft.aulast=Vidal&rft.aufirst=Nicolas&rft.au=Hedges, S. Blair&rft_id=https://comptes-rendus.academie-sciences.fr/biologies/articles/10.1016/j.crvi.2005.10.001/&rfr_id=info:sid/en.wikipedia.org:Toxicofera" class="Z3988">
  15. ^ Glenday, Craig (2013). Guinness World Records 2014. The Jim Pattison Group. ISBN 9781908843159.[page needed]
  16. ^ Weinstein, Scott A.; Smith, Tamara L.; Kardong, Kenneth V. (14 July 2009). "Reptile Venom Glands Form, Function, and Future". In Stephen P. Mackessy (ed.). Handbook of Venoms and Toxins of Reptiles. Taylor & Francis. pp. 76–84. ISBN 978-1-4200-0866-1. Retrieved 18 July 2013 – via Google Books.76-84&rft.pub=Taylor & Francis&rft.date=2009-07-14&rft.isbn=978-1-4200-0866-1&rft.aulast=Weinstein&rft.aufirst=Scott A.&rft.au=Smith, Tamara L.&rft.au=Kardong, Kenneth V.&rft_id=https://books.google.com/books?id=x_vME799de4C&pg=PA84&rfr_id=info:sid/en.wikipedia.org:Toxicofera" class="Z3988">
  17. ^ Hargreaves, Adam D.; Swain, Martin T.; Logan, Darren W.; Mulley, John F. (2014). "Testing the Toxicofera: Comparative transcriptomics casts doubt on the single, early evolution of the reptile venom system" (PDF). Toxicon. 92: 140–56. Bibcode:2014Txcn...92..140H. doi:10.1016/j.toxicon.2014.10.004. PMID 25449103.140-56&rft.date=2014&rft_id=info:pmid/25449103&rft_id=info:doi/10.1016/j.toxicon.2014.10.004&rft_id=info:bibcode/2014Txcn...92..140H&rft.aulast=Hargreaves&rft.aufirst=Adam D.&rft.au=Swain, Martin T.&rft.au=Logan, Darren W.&rft.au=Mulley, John F.&rft_id=http://pure.aber.ac.uk/ws/files/5439440/Testing_the_Toxicofera_Comparative_transcriptomics_casts_doubt_on_the_single_early_evolution_of_the_reptile_venom_system.pdf&rfr_id=info:sid/en.wikipedia.org:Toxicofera" class="Z3988">
[edit]