Jump to content

Terrane

From Wikipedia, the free encyclopedia
(Redirected from Terrane accretion)

In geology, a terrane (/təˈrn, ˈtɛrn/;[1][2] in full, a tectonostratigraphic terrane) is a crust fragment formed on a tectonic plate (or broken off from it) and accreted or "sutured" to crust lying on another plate. The crustal block or fragment preserves its distinctive geologic history, which is different from the surrounding areas—hence the term "exotic" terrane. The suture zone between a terrane and the crust it attaches to is usually identifiable as a fault. A sedimentary deposit that buries the contact of the terrane with adjacent rock is called an overlap formation. An igneous intrusion that has intruded and obscured the contact of a terrane with adjacent rock is called a stitching pluton.

There is also an older usage of the term terrane, which described a series of related rock formations or an area with a preponderance of a particular rock or rock group.

Overview

[edit]

A tectonostratigraphic terrane did not necessarily originate as an independent microplate, since it may not contain the full thickness of the lithosphere. It is a piece of crust that has been transported laterally, usually as part of a larger plate, and is relatively buoyant due to thickness or low density. When the plate of which it was a part subducted under another plate, the terrane failed to subduct, detached from its transporting plate, and accreted onto the overriding plate. Therefore, the terrane transferred from one plate to the other. Typically, accreting terranes are portions of continental crust which have rifted off another continental mass and been transported surrounded by oceanic crust, or they are old island arcs formed at some distant subduction zones.

A tectonostratigraphic terrane is a fault-bounded package of rocks of at least regional extent characterized by a geologic history that differs from that of neighboring terranes. The essential characteristic of these terranes is that the present spatial relations are incompatible with the inferred geologic histories. Where terranes that lie next to each other possess strata of the same age, they are considered separate terranes only if it can be demonstrated that the geologic evolutions are different and incompatible. There must be an absence of intermediate lithofacies that could link the strata.

The concept of tectonostratigraphic terrane developed from studies in the 1970s of the complicated Pacific Cordilleran orogenic margin of North America, a complex and diverse geological potpourri that was difficult to explain until the new science of plate tectonics illuminated the ability of crustal fragments to "drift" thousands of miles from their origin and attach themselves, crumpled, to an exotic shore. Such terranes were dubbed "accreted terranes" by geologists. Geologist J. N. Carney writes:

It was soon determined that these exotic crustal slices had in fact originated as "suspect terranes" in regions at some considerable remove, frequently thousands of kilometers, from the orogenic belt where they had eventually ended up. It followed that the present orogenic belt was itself an accretionary collage, composed of numerous terranes derived from around the circum-Pacific region and now sutured together along major faults. These concepts were soon applied to other, older orogenic belts, e.g. the Appalachian belt of North America.... Support for the new hypothesis came not only from structural and lithological studies, but also from studies of faunal biodiversity and palaeomagnetism.[3]

When terranes are composed of repeated accretionary events, and hence are composed of subunits with distinct history and structure, they may be called superterranes.[4]

List of tectonostratigraphic terranes

[edit]

Africa

Asia

Taiwan

Tibet

Australasia

Europe

Fennoscandia

North America

South America

References

[edit]

Citations

[edit]
  1. ^ "terrane". Merriam-Webster.com Dictionary. Merriam-Webster. Retrieved 2022-10-27.
  2. ^ "terrane". Dictionary.com Unabridged (Online). n.d. Retrieved 2023-04-02.
  3. ^ Carney, J. N. et al. (2000). Precambrian Rocks of England and Wales, (Geological Conservation Review Series, v. 20). UK: Joint Nature Conservation Committee. ISBN 978-1861074874.
  4. ^ "Terranes" Archived 2004-12-12 at the Wayback Machine University of British Columbia website
  5. ^ Schematic map of the Siberian craton showing boundaries of the craton and its terranes
  6. ^ a b c d e f g Okaya, D.; Christensen, N.I.; Ross, Z.E.; Wu, F.T. (2016). "Terrane‐controlled crustal shear wave splitting in Taiwan". Geophysical Research Letters. 43 (2): 556–563. Bibcode:2016GeoRL..43..556O. doi:10.1002/2015GL066446.
  7. ^ a b c d e f Aitchison, J. C., Ali, J. R., and Davis, A. M. (2007) "When and where did India and Asia collide?" Journal of Geophysical Research, v.112, pp.1–19
  8. ^ a b c d e f g h Mortimer, N; Rattenbury, MS; King, PR; Bland, KJ; Barrell, DJA; Bache, F; Begg, JG; Campbell, HJ; Cox, SC; Crampton, JS; Edbrooke, SW; Forsyth, PJ; Johnston, MR; Jongens, R; Lee, JM; Leonard, GS; Raine, JI; Skinner, DNB; Timm, C; Townsend, DB; Tulloch, AJ; Turnbull, IM; Turnbull, RE (2014). "High-level stratigraphic scheme for New Zealand rocks". New Zealand Journal of Geology and Geophysics. 57 (4): 402–419. doi:10.1080/00288306.2014.946062. ISSN 0028-8306.
  9. ^ Pharao, et al. (1996) Tectonic map of Britain, Ireland & adjacent areas UK:British Geological Survey
  10. ^ a b c d Viola, G.; Henderson, I.H.C.; Bingen, B.; Hendriks, B.W.H. (2011). "The Grenvillian–Sveconorwegian orogeny in Fennoscandia: Back-thrusting and extensional shearing along the 'Mylonite Zone'". Precambrian Research. 189 (3–4): 368–88. Bibcode:2011PreR..189..368V. doi:10.1016/j.precamres.2011.06.005. Retrieved 22 August 2015.
  11. ^ Cuthberta, S.J.; Carswellb, D.A.; Krogh-Ravnac, E.J.; Waind, A. (2000). "Eclogites and eclogites in the Western Gneiss Region, Norwegian Caledonides". Lithos. 52 (1–4): 165–195. Bibcode:2000Litho..52..165C. doi:10.1016/s0024-4937(99)00090-0.
  12. ^ a b c Hild, Martha; Barr, Sandra (2015). Geology of Nova Scotia. Portugal Cove: Boulder Publications. p. 18. ISBN 9781927099438.
  13. ^ a b c d Miller, Brent (1997). Geology, Geochronology, and Tectonic Significance of the Blair River Inlier, Northern Cape Breton Island, Nova Scotia. Halifax: Dalhousie University. p. 260.

General bibliography

[edit]
  • McPhee, John (1981). Basin and Range. New York: Farrar, Straus and Giroux.
  • McPhee, John (1983). In Suspect Terrain. New York: Farrar, Straus and Giroux.
  • McPhee, John (1993). Assembling California. New York: Farrar, Straus and Giroux.
[edit]