Jump to content

Portal:Climate change

From Wikipedia, the free encyclopedia

The Climate Change Portal

Surface air temperature change over the past 50 years.[1]

In common usage, climate change describes global warming—the ongoing increase in global average temperature—and its effects on Earth's climate system. Climate change in a broader sense also includes previous long-term changes to Earth's climate. The current rise in global average temperature is primarily caused by humans burning fossil fuels since the Industrial Revolution. Fossil fuel use, deforestation, and some agricultural and industrial practices add to greenhouse gases. These gases absorb some of the heat that the Earth radiates after it warms from sunlight, warming the lower atmosphere. Carbon dioxide, the primary greenhouse gas driving global warming, has grown by about 50% and is at levels unseen for millions of years.

Climate change has an increasingly large impact on the environment. Deserts are expanding, while heat waves and wildfires are becoming more common. Amplified warming in the Arctic has contributed to thawing permafrost, retreat of glaciers and sea ice decline. Higher temperatures are also causing more intense storms, droughts, and other weather extremes. Rapid environmental change in mountains, coral reefs, and the Arctic is forcing many species to relocate or become extinct. Even if efforts to minimise future warming are successful, some effects will continue for centuries. These include ocean heating, ocean acidification and sea level rise.

Climate change threatens people with increased flooding, extreme heat, increased food and water scarcity, more disease, and economic loss. Human migration and conflict can also be a result. The World Health Organization (WHO) calls climate change the greatest threat to global health in the 21st century.[obsolete source] Societies and ecosystems will experience more severe risks without action to limit warming. Adapting to climate change through efforts like flood control measures or drought-resistant crops partially reduces climate change risks, although some limits to adaptation have already been reached. Poorer communities are responsible for a small share of global emissions, yet have the least ability to adapt and are most vulnerable to climate change.

Many climate change impacts have been felt in recent years, with 2023 the warmest on record at 1.48 °C (2.66 °F) since regular tracking began in 1850. Additional warming will increase these impacts and can trigger tipping points, such as melting all of the Greenland ice sheet. Under the 2015 Paris Agreement, nations collectively agreed to keep warming "well under 2 °C". However, with pledges made under the Agreement, global warming would still reach about 2.7 °C (4.9 °F) by the end of the century. Limiting warming to 1.5 °C would require halving emissions by 2030 and achieving net-zero emissions by 2050.

Fossil fuel use can be phased out by conserving energy and switching to energy sources that do not produce significant carbon pollution. These energy sources include wind, solar, hydro, and nuclear power. Cleanly generated electricity can replace fossil fuels for powering transportation, heating buildings, and running industrial processes. Carbon can also be removed from the atmosphere, for instance by increasing forest cover and farming with methods that capture carbon in soil. (Full article...)

refer to caption and image description
Proposed methods of reflecting more sunlight to reduce Earth's temperature

Solar radiation modification (SRM), or solar geoengineering, refers to a range of approaches to limit global warming by increasing the amount of sunlight (solar radiation) that the atmosphere reflects back to space or by reducing the trapping of outgoing thermal radiation. Among the multiple potential approaches, stratospheric aerosol injection is the most-studied, followed by marine cloud brightening. SRM could be a temporary measure to limit climate-change impacts while greenhouse gas emissions are reduced and carbon dioxide is removed, but would not be a substitute for reducing emissions.

Multiple authoritative international scientific assessments, based on evidence from climate models and natural analogues, have generally shown that some forms of SRM could reduce global warming and many adverse effects of climate change. Specifically, controlled stratospheric aerosol injection appears able to greatly moderate most environmental impacts—especially warming—and consequently most ecological, economic, and other impacts of climate change across most regions. However, because warming from greenhouse gases and cooling from SRM would operate differently across latitudes and seasons, a world where global warming would be offset by SRM would have a different climate from one where this warming did not occur in the first place. Furthermore, confidence in the current projections of how SRM would affect regional climate and ecosystems is low.

SRM would pose environmental risks. In addition to its imperfect reduction of climate-change impacts, stratospheric aerosol injection could, for example, slow the recovery of stratospheric ozone. If a significant SRM intervention were to suddenly stop and not be resumed, the cooling would end relatively rapidly, posing serious environmental risks. Some environmental risks remain unknown. (Full article...)
List of selected articles

Selected picture – show another

Credit: NASA
The collapse of Larsen B Ice Shelf, showing the diminishing extent of the shelf from 1998 to 2002

WikiProjects

In the news

Selected biography – show another

General images

The following are images from various climate-related articles on Wikipedia.

Did you know – show another

... that global warming of the average air temperature rose 0.74 ± 0.18 °C (1.3 ± 0.32 °F) during the past century?

(Pictured left: Animated global map of monthly long term mean surface air temperature (Mollweide projection))

Other "Did you know" facts...

Selected panorama – show another

Plant Productivity in a Warming World: The past decade is the warmest on record since instrumental measurements began in the 1880s. Previous research suggested that in the '80s and '90s, warmer global temperatures and higher levels of precipitation—factors associated with climate change—were generally good for plant productivity. An updated analysis published this week in Science indicates that as temperatures have continued to rise, the benefits to plants are now overwhelmed by longer and more frequent droughts. High-resolution data from the Moderate-Resolution Imaging Spectroradiometer, or MODIS, indicate a net decrease in net primary production (NPP) from 2000-2009, as compared to the previous two decades. This narrated video gives an overview of NPP and the carbon cycle.

Topics


Categories

Web resources


Things to do

Wikimedia

References

  1. ^ "GISS Surface Temperature Analysis (v4)". NASA. Retrieved 12 January 2024.
  2. ^ Bhargav, Vishal (2021-10-11). "Climate Change Is Making India's Monsoon More Erratic". www.indiaspend.com. Retrieved 2021-10-11.
  3. ^ Tiwari, Dr Pushp Raj; Conversation, The. "Nobel prize: Why climate modellers deserved the physics award – they've been proved right again and again". phys.org. Retrieved 2021-10-11.
Discover Wikipedia using portals

Purge server cache