Jump to content

Portal:Animals

From Wikipedia, the free encyclopedia
(Redirected from Portal:Animal)

The Animals Portal

Animals are multicellular, eukaryotic organisms in the biological kingdom Animalia (/ˌænɪˈmliə/). With few exceptions, animals consume organic material, breathe oxygen, have myocytes and are able to move, can reproduce sexually, and grow from a hollow sphere of cells, the blastula, during embryonic development. Animals form a clade, meaning that they arose from a single common ancestor.

Over 1.5 million living animal species have been described, of which around 1.05 million are insects, over 85,000 are molluscs, and around 65,000 are vertebrates. It has been estimated there are as many as 7.77 million animal species on Earth. Animal body lengths range from 8.5 μm (0.00033 in) to 33.6 m (110 ft). They have complex ecologies and interactions with each other and their environments, forming intricate food webs. The scientific study of animals is known as zoology, and the study of animal behaviour is known as ethology.

Most living animal species belong to the infrakingdom Bilateria, a highly proliferative clade whose members have a bilaterally symmetric body plan. The vast majority belong to two large superphyla: the protostomes, which includes organisms such as the arthropods, molluscs, flatworms, annelids and nematodes; and the deuterostomes, which include the echinoderms, hemichordates and chordates, the latter of which contains the vertebrates. The simple Xenacoelomorpha have an uncertain position within Bilateria. (Full article...)

Zoology (UK: /zuˈɒləi/ zoo-OL-ə-jee, US: /zˈɒləi/ zoh-OL-ə-jee) is the scientific study of animals. Its studies include the structure, embryology, classification, habits, and distribution of all animals, both living and extinct, and how they interact with their ecosystems. Zoology is one of the primary branches of biology. The term is derived from Ancient Greek ζῷον, zōion ('animal'), and λόγος, logos ('knowledge', 'study'). (Full article...)

Entries here consist of Good and Featured articles, which meet a core set of high editorial standards.

The Puerto Rican amazon (Amazona vittata), also known as the Puerto Rican parrot (Spanish: cotorra puertorriqueña) or iguaca (Taíno), is the only extant parrot endemic to the archipelago of Puerto Rico, and belongs to the Neotropical genus Amazona. Measuring 28–30 cm (11.0–11.8 in), the bird is a predominantly green parrot with a red forehead and white rings around the eyes. Its closest relatives are believed to be the Cuban amazon (Amazona leucocephala) and the Hispaniolan amazon (Amazona ventralis).

The Puerto Rican amazon reaches sexual maturity at between three and four years of age. It reproduces once a year and is a cavity nester. Once the female lays eggs she will remain in the nest and continuously incubate them until hatching. The chicks are fed by both parents and will fledge 60 to 65 days after hatching. This parrot's diet is varied and consists of flowers, fruits, leaves, bark and nectar obtained from the forest canopy. (Full article...)

Selected pictures

Selected article - show another

Entries here consist of Good and Featured articles, which meet a core set of high editorial standards.

Lingula anatina, an inarticulate linguliform brachiopod

Brachiopods (/ˈbrækiˌpɒd/), phylum Brachiopoda, are a phylum of trochozoan animals that have hard "valves" (shells) on the upper and lower surfaces, unlike the left and right arrangement in bivalve molluscs. Brachiopod valves are hinged at the rear end, while the front can be opened for feeding or closed for protection. Two major categories are traditionally recognized, articulate and inarticulate brachiopods. The word "articulate" is used to describe the tooth-and-groove structures of the valve-hinge which is present in the articulate group, and absent from the inarticulate group. This is the leading diagnostic skeletal feature, by which the two main groups can be readily distinguished as fossils. Articulate brachiopods have toothed hinges and simple, vertically oriented opening and closing muscles. Conversely, inarticulate brachiopods have weak, untoothed hinges and a more complex system of vertical and oblique (diagonal) muscles used to keep the two valves aligned. In many brachiopods, a stalk-like pedicle projects from an opening near the hinge of one of the valves, known as the pedicle or ventral valve. The pedicle, when present, keeps the animal anchored to the seabed but clear of sediment which would obstruct the opening.

Brachiopod lifespans range from three to over thirty years. Ripe gametes (ova or sperm) float from the gonads into the main coelom and then exit into the mantle cavity. The larvae of inarticulate brachiopods are miniature adults, with lophophores that enable the larvae to feed and swim for months until the animals become heavy enough to settle to the seabed. The planktonic larvae of articulate species do not resemble the adults, but rather look like blobs with yolk sacs, and remain among the plankton for only a few days before leaving the water column upon metamorphosing. (Full article...)

List of selected articles


Close up of "wholphin"


General pictures

The following are images from various animal-related articles on Wikipedia.

Topics


The following table lists estimated numbers of described extant species for the animal groups with the largest numbers of species,[1] along with their principal habitats (terrestrial, fresh water,[2] and marine),[3] and free-living or parasitic ways of life.[4] Species estimates shown here are based on numbers described scientifically; much larger estimates have been calculated based on various means of prediction, and these can vary wildly. For instance, around 25,000–27,000 species of nematodes have been described, while published estimates of the total number of nematode species include 10,000–20,000; 500,000; 10 million; and 100 million.[5] Using patterns within the taxonomic hierarchy, the total number of animal species—including those not yet described—was calculated to be about 7.77 million in 2011.[6][7][a]

Phylum Example No. of
Species
Land Sea Fresh
water
Free-
living
Parasitic
Annelids 17,000[1] Yes (soil)[3] Yes[3] 1,750[2] Yes 400[4]
Arthropods wasp 1,257,000[1] 1,000,000
(insects)[9]
>40,000
(Malac-
ostraca)[10]
94,000[2] Yes[3] >45,000[b][4]
Bryozoa 6,000[1] Yes[3] 60–80[2] Yes
Chordates green spotted frog facing right 65,000[1]
45,000[11]

23,000[11]

13,000[11]
18,000[2]
9,000[11]
Yes 40
(catfish)[12][4]
Cnidaria Table coral 16,000[1] Yes[3] Yes (few)[3] Yes[3] >1,350
(Myxozoa)[4]
Echinoderms 7,500[1] 7,500[1] Yes[3]
Molluscs snail 85,000[1]
107,000[13]

35,000[13]

60,000[13]
5,000[2]
12,000[13]
Yes[3] >5,600[4]
Nematodes 25,000[1] Yes (soil)[3] 4,000[5] 2,000[2] 11,000[5] 14,000[5]
Platyhelminthes 29,500[1] Yes[14] Yes[3] 1,300[2] Yes[3]

3,000–6,500[15]

>40,000[4]

4,000–25,000[15]

Rotifers 2,000[1] >400[16] 2,000[2] Yes
Sponges 10,800[1] Yes[3] 200-300[2] Yes Yes[17]
Total number of described extant species as of 2013: 1,525,728[1]

Categories

Category puzzle
Category puzzle
Select [►] to view subcategories

WikiProjects

WikiProject family tree

WikiProjects
WikiProjects
More projects
  • Molluscs:
  • Vertebrates:
  • (Other)

Things you can do

Associated Wikimedia

The following Wikimedia Foundation sister projects provide more on this subject:

References

  1. ^ The application of DNA barcoding to taxonomy further complicates this; a 2016 barcoding analysis estimated a total count of nearly 100,000 insect species for Canada alone, and extrapolated that the global insect fauna must be in excess of 10 million species, of which nearly 2 million are in a single fly family known as gall midges (Cecidomyiidae).[8]
  2. ^ Not including parasitoids.[4]
  1. ^ a b c d e f g h i j k l m n Zhang, Zhi-Qiang (2013-08-30). "Animal biodiversity: An update of classification and diversity in 2013. In: Zhang, Z.-Q. (Ed.) Animal Biodiversity: An Outline of Higher-level Classification and Survey of Taxonomic Richness (Addenda 2013)". Zootaxa. 3703 (1): 5. doi:10.11646/zootaxa.3703.1.3. Archived from the original on 24 April 2019. Retrieved 2 March 2018.
  2. ^ a b c d e f g h i j Balian, E. V.; Lévêque, C.; Segers, H.; Martens, K. (2008). Freshwater Animal Diversity Assessment. Springer. p. 628. ISBN 978-1-4020-8259-7.
  3. ^ a b c d e f g h i j k l m n Hogenboom, Melissa. "There are only 35 kinds of animal and most are really weird". BBC Earth. Archived from the original on 10 August 2018. Retrieved 2 March 2018.
  4. ^ a b c d e f g h Poulin, Robert (2007). Evolutionary Ecology of Parasites. Princeton University Press. p. 6. ISBN 978-0-691-12085-0.
  5. ^ a b c d Felder, Darryl L.; Camp, David K. (2009). Gulf of Mexico Origin, Waters, and Biota: Biodiversity. Texas A&M University Press. p. 1111. ISBN 978-1-60344-269-5.
  6. ^ "How many species on Earth? About 8.7 million, new estimate says". 24 August 2011. Archived from the original on 1 July 2018. Retrieved 2 March 2018.
  7. ^ Mora, Camilo; Tittensor, Derek P.; Adl, Sina; Simpson, Alastair G.B.; Worm, Boris (2011-08-23). Mace, Georgina M. (ed.). "How Many Species Are There on Earth and in the Ocean?". PLOS Biology. 9 (8): e1001127. doi:10.1371/journal.pbio.1001127. PMC 3160336. PMID 21886479.
  8. ^ Hebert, Paul D.N.; Ratnasingham, Sujeevan; Zakharov, Evgeny V.; Telfer, Angela C.; Levesque-Beaudin, Valerie; Milton, Megan A.; Pedersen, Stephanie; Jannetta, Paul; deWaard, Jeremy R. (1 August 2016). "Counting animal species with DNA barcodes: Canadian insects". Philosophical Transactions of the Royal Society B: Biological Sciences. 371 (1702): 20150333. doi:10.1098/rstb.2015.0333. PMC 4971185. PMID 27481785.
  9. ^ Stork, Nigel E. (January 2018). "How Many Species of Insects and Other Terrestrial Arthropods Are There on Earth?". Annual Review of Entomology. 63 (1): 31–45. doi:10.1146/annurev-ento-020117-043348. PMID 28938083. S2CID 23755007. Stork notes that 1m insects have been named, making much larger predicted estimates.
  10. ^ Poore, Hugh F. (2002). "Introduction". Crustacea: Malacostraca. Zoological catalogue of Australia. Vol. 19.2A. CSIRO Publishing. pp. 1–7. ISBN 978-0-643-06901-5.
  11. ^ a b c d Reaka-Kudla, Marjorie L.; Wilson, Don E.; Wilson, Edward O. (1996). Biodiversity II: Understanding and Protecting Our Biological Resources. Joseph Henry Press. p. 90. ISBN 978-0-309-52075-1.
  12. ^ Burton, Derek; Burton, Margaret (2017). Essential Fish Biology: Diversity, Structure and Function. Oxford University Press. pp. 281–282. ISBN 978-0-19-878555-2. Trichomycteridae ... includes obligate parasitic fish. Thus 17 genera from 2 subfamilies, Vandelliinae; 4 genera, 9spp. and Stegophilinae; 13 genera, 31 spp. are parasites on gills (Vandelliinae) or skin (stegophilines) of fish.
  13. ^ a b c d Nicol, David (June 1969). "The Number of Living Species of Molluscs". Systematic Zoology. 18 (2): 251–254. doi:10.2307/2412618. JSTOR 2412618.
  14. ^ Sluys, R. (1999). "Global diversity of land planarians (Platyhelminthes, Tricladida, Terricola): a new indicator-taxon in biodiversity and conservation studies". Biodiversity and Conservation. 8 (12): 1663–1681. doi:10.1023/A:1008994925673. S2CID 38784755.
  15. ^ a b Pandian, T. J. (2020). Reproduction and Development in Platyhelminthes. CRC Press. pp. 13–14. ISBN 9781000054903.
  16. ^ Fontaneto, Diego. "Marine Rotifers | An Unexplored World of Richness" (PDF). JMBA Global Marine Environment. pp. 4–5. Archived (PDF) from the original on 2 March 2018. Retrieved 2 March 2018.
  17. ^ Morand, Serge; Krasnov, Boris R.; Littlewood, D. Timothy J. (2015). Parasite Diversity and Diversification. Cambridge University Press. p. 44. ISBN 978-1-107-03765-6. Archived from the original on 12 December 2018. Retrieved 2 March 2018.