Jump to content

Phosphidosilicates

From Wikipedia, the free encyclopedia
(Redirected from Phosphidosilicate)

The phosphidosilicates or phosphosilicides are inorganic compounds containing silicon bonded to phosphorus and one or more other kinds of elements. In the phosphosilicates each silicon atom is surrounded by four phosphorus atoms in a tetrahedron. The triphosphosilicates have a SiP3 unit, that can be a planar triangle like carbonate CO3. The phosphorus atoms can be shared to form different patterns e.g. [Si2P6]10− which forms pairs, and [Si3P7]3− which contains two-dimensional double layer sheets.[1] [SiP4]8− with isolated tetrahedra, and [SiP2]2− with a three dimensional network with shared tetrahedron corners.[2] SiP clusters can be joined, not only by sharing a P atom, but also by way of a P-P bond. This does not happen with nitridosilicates or plain silicates.

The phosphidosilicates can be considered as a subclass of the pnictogenidosilicates, where P can be substituted by N (nitridosilicates), As, or Sb. Also Silicon can be substituted to form other series of compounds by replacement with other 4 oxidation state atoms like germanium, tin, titanium or even tantalum.

List

[edit]
formula name crystal

system

space

group

unit cell Å form MW density properties references
Li2SiP2 tetragonal I41/acd a=12.111 Å, c=18.658 Å, Z=32 V=2732.6 4 SiP4 tetrahedra are linked together to form a supertetrahedron. Supertetrahedrons are linked together by corner sharing. 103.91 2.02 [2][3]
LiSi2P3 I41/a a=18.4757  Å, c=35.0982  Å, Z=100 Interpenetrating networks of bridged supertetrahedra [3]
Li3Si3P7 monoclinic P21/m a = 6.3356 Å, b = 7.2198 Å, c = 10.6176 Å, β = 102.941°, Z = 2 grey [1]
Li5SiP3 Cubic Fm3m a=5.84 Z=1.33 SiP4 tetrahedra, but some Si replace by Li [4]
Li10Si2P6 P21/n a = 7.2051 Å, b = 6.5808 Å, c = 11.6405 Å, β = 90.580°, Z = 4 contains Si2P6 units with two Si atoms linked by two P atoms also known by Li5SiP3 [1]
Li8SiP4 lithium orthophosphidosilicate cubic Pa3 a=11.6784 Z=8 V=1592.76 207.49 1.73 orange red [2]
Li14SiP6 Cubic Fm3m a=5.9393 Z=4 SiP4 tetrahedra, but some Si replace by Li 1.644 [5]
Na19Si13P25 triclinic P1 a =13.3550 Å, b =15.3909 Å, c =15.4609 Å, α =118.05°, β =111.71°, γ =93.05°, Z =2 T3 supertetrahedra sodium ion conductor [6]
Na23Si19P33 monoclinic C2/c a =28.4985 Å, b =16.3175 Å, c = 13.8732 Å, β =102.35°, Z =4 solely T3 supertetrahedra sodium ion conductor [6]
Na23Si28P45 monoclinic P21/c a =19.1630 Å, b =23.4038 Å, c = 19.0220 Å, β =104.30°, Z =4 T3 and T4 supertetrahedra sodium ion conductor [6]
Na23Si37P57 monoclinic C2/c a =34.1017 Å, b =16.5140 Å, c = 19.5764 Å, β =111.53°, Z =4 solely T4 supertetrahedra sodium ion conductor [6]
LT-NaSi2P3 tetragonal I41/a a =19.5431 Å, c = 34.5317 Å, Z =100 fused T4 and T5 supertetrahedra sodium ion conductor [6]
HT-NaSi2P3 tetragonal I41/acd a =20.8976 Å, c = 40.081 Å, Z =128 solely fused T5 supertetrahedra sodium ion conductor [6]
Na2SiP2 disodium diphosphidosilicate Tetrahedral Pccn a = 12.7929 Å, b = 22.3109 Å, c = 6.0522 Å and Z = 16 edge‐shared SiP4 tetrahedra with 1 width chains dark red 0.43 eV [7]
Na5SiP3 monoclinic P21/c Z=4 a= 7.352 Å, b= 7.957, Å c= 13.164 Å, α=90.757° 2.06 also known by Na10Si2P6 band gap 1.292 eV [8][9]
Na3K2SiP3 trisodium dipotassium triphosphidosilicate Orthorhombic Pnma a=14.580 b=4.750 c= 13.020 V=901.7 Z=4 SiP3 triangles [10]
Na4Ca2SiP4 hexagonal P63mc a=913 c=617 V=151.5 SiP4 tetrahedra 2.128 [11]
Na4Sr2SiP4 hexagonal P63mc a=9.283 c=7.295 V=164 2.498 [11]
Na4Eu2SiP4 hexagonal P63mc a=9.251 c=7.198 V=160.7 3.226 [11]
MgSiP2 tetragonal I42d a=5.721 c=10.095 orange yellow; semiconductor band gap 2.24 eV; decomposed by water or acid [12]
AlSiP3 orthorhombic Pmnb a = 9.872, b = 5.861, c = 6.088, Z=4 P-P bonds black [13][14]
K2SiP2 orthorhombic Ibam a = 12.926, b = 6.867, c= 6.107, Z=4, V=542.07 one dimensional chain 2.061 [13][15]
KSi2P3 monoclinic C2/c a=10.1327 Å, b=10.1382 Å, c=21.118 Å, β=96.88°, Z=8 V=2153.8Å3 solely fused T3 supertetrahedra 2.321 dark red, band gap 1.72 eV [8]
KSi2P3 tetragonal I41/acd a =21.922 Å, c = 39.868 Å, Z =128 solely fused T5 supertetrahedra potassium ion conductor [16][17]
Ca2Si2P4 P41212 a = 7.173, c = 26.295 band gap 0.984 eV [18]
Ca3Si2P4 monoclinic a = 7.073 Å, b = 17.210 Å, c = 6.918 Å, β = 111.791° band gap 0.826 eV [18]
Ca3Si8P14 monoclinic P21/c a = 12.138 Å, b = 13.476 Å, c = 6.2176 Å, β = 90.934° band gap 0.829 eV [18]
Ca4SiP4 cubic a=11.875 V=1675 2.48 [19]
MnSiP2 tetrahedral I 4 2 d a 5.5823 c 10.230 metallic; SHG 32.8 pm/V [20]
Fe5SiP a=6.766 c=12.456 V=493.8 Z=6 6.83 [21]
CoSi3P3 monoclinic P21 (pseudo orthrhombic) a = 5.899, b = 5.703, c = 12.736, β = 90.00° Z=4 resistivity 0.62 Ohm cm band gap 0.12 eV [22]
NiSi3P4 tetragonal I42m a = 5.1598 c =10.350 Z = 2 3.22 [13][23]
NiSi2P3 Imm2 a = 3.505, b = 11.071, c = 5.307, Z = 2 [13][24]
FeSi4P4 a = 4.876, b = 5.545, c = 6.064, α = 85.33°, β = 68.40°, γ = 70.43° Z=4 P and Si random 3.38 resistivity 0.3 Ohm cm band gap 0.15, can take in Li or Na [13][22][25]
Cu4SiP8 I41/a a = 12.186, c = 5.732, Z = 8 P-P bonds [13][26]
ZnSiP2 Tetragonal I42d a = 5.399 Å c = 10.435 Å Z=4 V=304.173 Å3 chalcopyrite structure SiP4 and Zn4 tetrahedra 154.936 3.3 (measured) dark red clear; red luminescent; semiconductor; band gap 2.01 eV [13][27][28]
ZnSiP2 Cubic over 27 GPa Superconductor Tc = 8.2K [28]
Sr2SiP4 band gap 1.41 eV [29]
Sr4SiP4 cubic a=12.426 V=1919 3.48 [19]
SrSi7P10 triclinic P1 a =6.1521 Å, b =8.0420 Å, c =8.1374 Å, α =106.854°, β =99.020°, γ =105.190°, Z =1 tetrahedral network derived from T2 supertetrahedra band gap 1.1 eV [30][29]
Mg2Sr3Si20P30 hexagonal P63 a = 15.7767 c = 11.7407 [31]
MgSr3Si3P7 P31m a = 18.7339 c = 6.1393 [31]
RhSi3P3 monoclinic C2 a=5.525, b=7.210, c=5.522 β=118.31°, Z=2

P and Si random

4.005 black [13][32]
RuSi4P4 triclinic P1 a = 4.936, b = 5.634, c = 6.162, α = 85.51°, β = 68.26°, γ = 70.69° Z=1 V=150 3.74 metallic [22][33]
RuSi4P4 triclinic P1 a=4.9362 b=5.6326 c=6.1649 α=85.5073° β=68.2559° γ=70.6990° 3.732 dark red;band gap 1.9 eV [34]
AgSiP2 Tetragonal I42d 6.5275, c = 8.550, Z = 4; V = 364.3 SiP4 corner sharing 305.77 5.58 shiny black [13]
Mg2In3Si2P7 monoclinic P21 a 6.9375 b 6.5646 c 14.469 β 103.87° Z=2 639.7 3.458 SHG 7.1 × AgGaS2; band gap 2.21 [35]
Sn4.2Si9P16 rhombohedral R3 a = 9.504 Å, α = 111.00°, and Z = 1 band gap 0.2 [36]
CdSiP2 tetragonal I42d a = 5.680 c = 10.431 Å Z=4 V=336.494 Å3 chalcopyrite structure 202.434 3.995 carmine colour; red luminescent [13][37][38]
Cs2SiP2 Dicesium catena-diphosphidosilicate Orthorhombic Ibam [13]
Cs5SiP3 Pentacesium triphosphidosilicate Orthorhombic Pnma a=6.064, b=14.336, c=15.722 SiP3 planar triangles dark metallic, air sensitive [39]
BaSi7P10 triclinic P1 a =6.1537 Å, b =8.0423 Å, c =8.1401 Å, α =106.863°, β =99.050°, γ =105.188°, Z =1 tetrahedral network derived from T2 supertetrahedra [30]
Ba2SiP4 Tetragonal I42d a = 9.90.57 Å, c = 7.31.80 Å; Z = 4 V=718.06 Å contains P-P bonds 426.65 band gap 1.45 eV [40][29]
Ba2SiP4 Orthorhombic Pnma a=12.3710 b=4.6296 c=7.9783 Z= 8 V=1443.9 chains of Si-P-Si 426.65 3.925 black band gap 1.7 eV [41]
Ba2Si3P6 band gap 1.88 [29]
Ba3Si4P6 monoclinic P21/m a=1153.7 Å, b=728.1 Å, c=752.7 Å, β = 99.41° V=623.76 Z=2 Zintl compound P-P and Si-Si bonds 3.78 black metallic [13][42]
Ba4SiP4 cubic a=13.023 V=2219 4.22 [13][19]
BaCuSi2P3 monoclinic a=4.5659 b=10.1726 c=6.8236 β = 109.311 V=299.10 layered [43]
LaSiP3 monoclinic a = 5.972, b = 25.255, c = 4.168, β= 135.71°, Z = 4 two dimensional network of boat-shaped six-membered rings of Si-P-Si-P-Si-P [44]
LaSi2P6 Cmc21 a=10.129 b=28.17 c=10.374 Z=16 P-P bonds 380.9 3.42 grey [13][45]
La2Mg3SiP6 orthorhombic Pnma a=11.421 b=8.213 c=10.677 Z=4 [46]
CeSiP3 orthorhombic Pn21a a = 5.861, b= 5.712, c= 25.295 V=846.7 Å3, Z=8 P-P bonds 261.13 4.095 [13][47]
CeSi2P6 Cmc21 a= 10.118 b= 28.03 c= 10.311 Z= 16, V=2.924 P-P bonds 382.1 3.47 grey [45]
Ce2Mg3SiP6 orthorhombic Pnma a=11.356 b=8.188 c=10.564 Z=4 [46]
PrSi2P6 Cmc21 a= 10.085 b= 27.95 c= 10.267 Z= 16, V=2.895 nm3 P-P bonds grey [45]
NdSi2P6 Cmc21 a= 10.031,b= 27.81,c= 10.245,Z= 16, V=2.857 P-P bonds grey [45]
ReSi4P4
OsSi4P4 triclinic P1 a = 4.948, b = 5.620, c = 6.175, α = 85.65, β = 68.36, γ = 70.89, Z=4 V=150.6 4.72 metallic [22][33]
IrSi3P3 monoclinic C2 a=6.577, b=7.229, c=5.484 β=117.91°, Z=2 black [22][32]
IrSi3P3 monoclinic Cm a=6.5895 b=7.2470 c=5.4916 β=117.892 dark red;band gap 1.8 eV [34]
PtSi2P2 monoclinic P21 a=6.025 Å, b=9.468 Å, c=11.913 Å, β=102.91°,Z=8, V=552.2 6.327 high resistance metallic,shiny black, air sensitive [48]
PtSi3P2 triclinic P1 a=4.840 Å,b=5.482 Å,c=8.052 Å, α=91.57°, β=93.52°, γ=108.14°, Z=2 V=202.3 5.656 shiny black [48]
AuSiP rhombohedral R3m a=3.459, c = 17.200, Z = 3; V = 178.19 256.03 7.16 shiny black [13]
Th2SiP5 triclinic a=4.04.3 Å, b=4.04.5 Å, c = 10.279 pm, α = 90.09°, β = 90.09° and γ = 89.50°, Z = 1 chains of corner linked SiP4 tetrahedra, and square net of P [44]

References

[edit]
  1. ^ a b c Eickhoff, Henrik; Toffoletti, Lorenzo; Klein, Wilhelm; Raudaschl-Sieber, Gabriele; Fässler, Thomas F. (24 May 2017). "Synthesis and Characterization of the Lithium-Rich Phosphidosilicates Li10Si2P5 and Li3Si3P7". Inorganic Chemistry. 56 (11): 6688–6694. doi:10.1021/acs.inorgchem.7b00755. PMID 28537719.
  2. ^ a b c Toffoletti, Lorenzo; Kirchhain, Holger; Landesfeind, Johannes; Klein, Wilhelm; van Wüllen, Leo; Gasteiger, Hubert A.; Fässler, Thomas F. (5 December 2016). "Lithium Ion Mobility in Lithium Phosphidosilicates: Crystal Structure, 7Li, 29Si, and 31P MAS NMR Spectroscopy, and Impedance Spectroscopy of Li8SiP4 and Li2SiP2". Chemistry - A European Journal. 22 (49): 17635–17645. doi:10.1002/chem.201602903. PMID 27786395.
  3. ^ a b Haffner, Arthur; Bräuniger, Thomas; Johrendt, Dirk (17 October 2016). "Supertetrahedral Networks and Lithium-Ion Mobility in Li2SiP2 and LiSi2P3". Angewandte Chemie International Edition. 55 (43): 13585–13588. doi:10.1002/anie.201607074. PMID 27676447.
  4. ^ Juza, Robert; Schulz, Werner (1954-02-01). "Ternäre Phosphide und Arsenide des Lithiums mit Elementen der 3. und 4. Gruppe". Zeitschrift für Anorganische und Allgemeine Chemie. 275 (1–3): 65–78. doi:10.1002/zaac.19542750107. ISSN 1521-3749.
  5. ^ Strangmüller, Stefan; Eickhoff, Henrik; Müller, David; Klein, Wilhelm; Raudaschl-Sieber, Gabriele; Kirchhain, Holger; Sedlmeier, Christian; Baran, Volodymyr; Senyshyn, Anatoliy; Deringer, Volker L.; van Wüllen, Leo; Gasteiger, Hubert A.; Fässler, Thomas F. (12 August 2019). "Fast Ionic Conductivity in the Most Lithium-Rich Phosphidosilicate Li14SiP6". Journal of the American Chemical Society. 141 (36): 14200–14209. doi:10.1021/jacs.9b05301. PMID 31403777. S2CID 199550654.
  6. ^ a b c d e f Haffner, Arthur; Hatz, Anna-Katharina; Moudrakovski, Igor; Lotsch, Bettina V.; Johrendt, Dirk (2018). "Fast Sodium-Ion Conductivity in Supertetrahedral Phosphidosilicates". Angewandte Chemie International Edition. 57 (21): 6155–6160. doi:10.1002/anie.201801405. ISSN 1521-3773. PMID 29611884.
  7. ^ Haffner, Arthur; Hatz, Anna-Katharina; Hoch, Constatin; Lotsch, Bettina V.; Johrendt, Dirk (2020). "Synthesis and Structure of the Sodium Phosphidosilicate Na2SiP2". European Journal of Inorganic Chemistry. 2020 (7): 617–621. doi:10.1002/ejic.201901083.
  8. ^ a b Feng, Kai; Kang, Lei; Yin, Wenlong; Hao, Wenyu; Lin, Zheshuai; Yao, Jiyong; Wu, Yicheng (2013). "KSi2P3: A new layered phosphidopolysilicate (IV)". Journal of Solid State Chemistry. 205: 129–133. Bibcode:2013JSSCh.205..129F. doi:10.1016/j.jssc.2013.07.018.
  9. ^ Persson, Kristin (2014). "36 Materials Science". mp-5929: Na5SiP3 (monoclinic, P2_1/c, 14). LBNL Materials Project; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). doi:10.17188/1277186.
  10. ^ Eisenmann, B.; Klein, J.; Somer, M. (1991-12-01). "Crystal structure of trisodium dipotassium triphosphidosilicate, Na3K2SiP3". Zeitschrift für Kristallographie - Crystalline Materials. 197 (1–4): 275. Bibcode:1991ZK....197..275E. doi:10.1524/zkri.1991.197.14.275. ISSN 2196-7105. S2CID 101210322.
  11. ^ a b c Nuss, J.; Kalpen, H.; Hönle, W.; Hartweg, M.; von Schnering, H. G. (1997-01-01). "Neue Tetrapnictidometallate von Silicium, Germanium, Zinn und Tantal mit der Na6ZnO4-Struktur". Zeitschrift für Anorganische und Allgemeine Chemie. 623 (1–6): 205–211. doi:10.1002/zaac.19976230134. ISSN 1521-3749.
  12. ^ Springthorpe, A. J.; Harrison, J. G. (June 1969). "MgSiP2: a New Member of the II IV V2 Family of Semiconducting Compounds". Nature. 222 (5197): 977. Bibcode:1969Natur.222..977S. doi:10.1038/222977a0. ISSN 0028-0836. S2CID 4149732.
  13. ^ a b c d e f g h i j k l m n o p Kaiser, Peter; Jeitschko, Wolfgang (April 1997). "Preparation and Crystal Structures of the Ternary Compounds Ag2SiP2 and AuSiP" (PDF). Zeitschrift für Naturforschung B. 52 (4): 462–468. doi:10.1515/znb-1997-0406. S2CID 196951651.Open access icon
  14. ^ von Schnering, Hans Georg; Menge, Günter (1979). "AlSiP3, a compound with a novel wurtzite-pyrite intergrowth structure". Journal of Solid State Chemistry. 28 (1): 13–19. Bibcode:1979JSSCh..28...13V. doi:10.1016/0022-4596(79)90053-7.
  15. ^ Eisenmann, Brigitte; Somer, Mehmet (1984-06-01). "K2SiP2, ein Phosphidopolysilikat(IV) / K2SiP2, a Phosphidopolysilicate (IV)". Zeitschrift für Naturforschung B. 39 (6): 736–738. doi:10.1515/znb-1984-0607. ISSN 1865-7117. S2CID 95293305.
  16. ^ Johrendt, Dirk; Haffner, Arthur; Hatz, Anna-Katharina; Zeman, Otto E. O.; Hoch, Constantin; Lotsch, Bettina V. (2021-03-18). "Polymorphism and fast Potassium‐Ion Conduction in the T5 Supertetrahedral Phosphidosilicate KSi2P3". Angewandte Chemie: ange.202101187. doi:10.1002/ange.202101187. ISSN 0044-8249. S2CID 235534794.
  17. ^ Johrendt, Dirk; Haffner, Arthur; Hatz, Anna-Katharina; Zeman, Otto E. O.; Hoch, Constantin; Lotsch, Bettina V. (2021). "Polymorphism and fast Potassium-Ion Conduction in the T5 Supertetrahedral Phosphidosilicate KSi2P3". Angewandte Chemie International Edition. 60 (24): 13641–13646. doi:10.1002/anie.202101187. ISSN 1521-3773. PMC 8252096. PMID 33734533.
  18. ^ a b c Zhang, Xiang; Yu, Tongtong; Li, Chunlong; Wang, Shanpeng; Tao, Xutang (2015-07-01). "Synthesis and Crystal Structures of the Calcium Silicon Phosphides Ca2Si2P4, Ca3Si8P14 and Ca3Si2P4". Zeitschrift für Anorganische und Allgemeine Chemie. 641 (8–9): 1545–1549. doi:10.1002/zaac.201400620. ISSN 1521-3749.
  19. ^ a b c Eisenmann, B.; Jordan, H.; Schäfer, H. (1982). "Zintl-phasen mit komplexen anionen: Darstellung und struktur der o-phosphosilikate und -germanate EII4EIVP4 (MIT EII = Ca, Sr, Ba und EIV = Si, Ge)". Materials Research Bulletin. 17 (1): 95–99. doi:10.1016/0025-5408(82)90188-x.
  20. ^ Yu, Tongtong; Wang, Shanpeng; Zhang, Xiang; Li, Chenning; Qiao, Jie; Jia, Ning; Han, Bing; Xia, Sheng-Qing; Tao, Xutang (2019-03-26). "MnSiP 2 : A New Mid-IR Ternary Phosphide with Strong SHG Effect and Ultrabroad Transparency Range". Chemistry of Materials. 31 (6): 2010–2018. doi:10.1021/acs.chemmater.8b05015. ISSN 0897-4756. S2CID 104328291.
  21. ^ Ellner, M.; El-Boragy, M. (1992). "Über die eisenhaltigen vertreter des strukturtyps Pd5Sb2". Journal of Alloys and Compounds. 184 (1): 131–138. doi:10.1016/0925-8388(92)90461-h.
  22. ^ a b c d e Perrier, Ch.; Kreisel, J.; Vincent, H.; Chaix-Pluchery, O.; Madar, R. (1997). "Synthesis, crystal structure, physical properties and Raman spectroscopy of transition metal phospho-silicides MSixPy (M = Fe, Co, Ru, Rh, Pd, Os, Ir, Pt)". Journal of Alloys and Compounds. 262–263: 71–77. doi:10.1016/s0925-8388(97)00331-9.
  23. ^ May, Andrew F.; McGuire, Michael A.; Wang, Hsin (2013-03-13). "Thermoelectric properties of polycrystalline NiSi3P4". Journal of Applied Physics. 113 (10): 103707–103707–5. arXiv:1303.3772. Bibcode:2013JAP...113j3707M. doi:10.1063/1.4794992. ISSN 0021-8979. S2CID 119224937.
  24. ^ Wallinda, Jörg; Jeitschko, Wolfgang (1995). "Ni1.282(4)Si1.284(5)P3 or NiSi2P3: Two Solutions with Different Atom Distributions for One Single-Crystal X-Ray Data Set, Both Refined to Residuals of Less Than 2.5%". Journal of Solid State Chemistry. 114 (2): 476–480. Bibcode:1995JSSCh.114..476W. doi:10.1006/jssc.1995.1071.
  25. ^ Coquil, Gaël; Fullenwarth, Julien; Grinbom, Gal; Sougrati, Moulay Tahar; Stievano, Lorenzo; Zitoun, David; Monconduit, Laure (2017). "FeSi 4 P 4 : A novel negative electrode with atypical electrochemical mechanism for Li and Na-ion batteries". Journal of Power Sources. 372: 196–203. Bibcode:2017JPS...372..196C. doi:10.1016/j.jpowsour.2017.10.069.
  26. ^ Kaiser, Peter; Jeitschko, Wolfgang (1996-01-01). "Preparation and crystal structure of the Copper Silicon Polyphosphide Cu4SiP8". Zeitschrift für Anorganische und Allgemeine Chemie. 622 (1): 53–56. doi:10.1002/zaac.19966220109. ISSN 1521-3749.
  27. ^ Abrahams, S. C.; Bernstein, J. L. (June 1970). "Crystal Structure of Luminescent ZnSiP4". The Journal of Chemical Physics. 52 (11): 5607–5613. Bibcode:1970JChPh..52.5607A. doi:10.1063/1.1672831.
  28. ^ a b Yuan, Yifang; Zhu, Xiangde; Zhou, Yonghui; Chen, Xuliang; An, Chao; Zhou, Ying; Zhang, Ranran; Gu, Chuanchuan; Zhang, Lili; Li, Xinjian; Yang, Zhaorong (December 2021). "Pressure-engineered optical properties and emergent superconductivity in chalcopyrite semiconductor ZnSiP2". NPG Asia Materials. 13 (1): 15. Bibcode:2021npjAM..13...15Y. doi:10.1038/s41427-021-00285-0. ISSN 1884-4049. S2CID 231886575.
  29. ^ a b c d Chen, Jindong; Wu, Qingchen; Tian, Haotian; Jiang, Xiaotian; Xu, Feng; Zhao, Xin; Lin, Zheshuai; Luo, Min; Ye, Ning (2022-03-31). "Uncovering a Vital Band Gap Mechanism of Pnictides". Advanced Science. 9 (14): 2105787. doi:10.1002/advs.202105787. ISSN 2198-3844. PMC 9109059. PMID 35486031. S2CID 247861820.
  30. ^ a b Haffner, Arthur; Weippert, Valentin; Johrendt, Dirk (2021). "The Phosphidosilicates SrSi7P10 and BaSi7P10". Zeitschrift für anorganische und allgemeine Chemie. 647 (4): 326–330. doi:10.1002/zaac.202000296. ISSN 1521-3749.
  31. ^ a b Aicher, J; Johrendt, D. (2024). "Crystal Structures of the Phosphidosilicates Mg2Sr3Si20P30 and MgSr3Si3P7" (PDF). DGK Conference (German Crystallographic Society). 32 (11).
  32. ^ a b Kirschen, M.; Vincent, H.; Perrier, Ch.; Chaudouet, P.; Chenevier, B.; Madar, R. (1995). "Synthesis and crystal structure of rhodium and iridium new phospho-silicides". Materials Research Bulletin. 30 (4): 507–513. doi:10.1016/0025-5408(95)00021-6.
  33. ^ a b Perrier, Ch.; Vincent, H.; Chaudouët, P.; Chenevier, B.; Madar, R. (1995). "Preparation and crystal structure of a new family of transition metal phospho-silicides". Materials Research Bulletin. 30 (3): 357–364. doi:10.1016/0025-5408(95)00001-1.
  34. ^ a b Lee, Shannon; Carnahan, Scott L.; Akopov, Georgiy; Yox, Philip; Wang, Lin‐Lin; Rossini, Aaron J.; Wu, Kui; Kovnir, Kirill (April 2021). "Noncentrosymmetric Tetrel Pnictides RuSi 4 P 4 and IrSi 3 P 3 : Nonlinear Optical Materials with Outstanding Laser Damage Threshold". Advanced Functional Materials. 31 (16): 2010293. doi:10.1002/adfm.202010293. ISSN 1616-301X.
  35. ^ Chen, Jindong; Chen, Hongxiang; Xu, Feng; Cao, Liling; Jiang, Xiaotian; Yang, Shunda; Sun, Yingshuang; Zhao, Xin; Lin, Chensheng; Ye, Ning (2021-07-14). "Mg 2 In 3 Si 2 P 7 : A Quaternary Diamond-like Phosphide Infrared Nonlinear Optical Material Derived from ZnGeP 2". Journal of the American Chemical Society. 143 (27): 10309–10316. doi:10.1021/jacs.1c03930. ISSN 0002-7863. PMID 34196529. S2CID 235698297.
  36. ^ Pivan, Jean-Yves; Guerin, Roland; Padiou, Jean; Sergent, Marcel (1988). "Preparation and crystal structure of the semiconducting compound Sn4.2Si9P16". Journal of Solid State Chemistry. 76 (1): 26–32. Bibcode:1988JSSCh..76...26P. doi:10.1016/0022-4596(88)90189-2.
  37. ^ Abrahams, S. C.; Bernstein, J. L. (15 July 1971). "Luminescent Piezoelectric CdSiP2: Normal Probability Plot Analysis, Crystal Structure, and Generalized Structure of the AIIBIVC2IV Family". The Journal of Chemical Physics. 55 (2): 796–803. Bibcode:1971JChPh..55..796A. doi:10.1063/1.1676146.
  38. ^ Zawilski, Kevin T.; Schunemann, Peter G.; Pollak, Thomas C.; Zelmon, David E.; Fernelius, Nils C.; Kenneth Hopkins, F. (April 2010). "Growth and characterization of large CdSiP2 single crystals". Journal of Crystal Growth. 312 (8): 1127–1132. Bibcode:2010JCrGr.312.1127Z. doi:10.1016/j.jcrysgro.2009.10.034.
  39. ^ Eisenmann, Brigitte; Klein, Jürgen; Somer, Mehmet (1990-01-01). "CO 32−-isostere Anionen in Cs5SiP3, Cs5SiAs3, Cs5GeP3 und Cs5GeAs3". Angewandte Chemie. 102 (1): 92–93. Bibcode:1990AngCh.102...92E. doi:10.1002/ange.19901020127. ISSN 1521-3757.
  40. ^ Johrendt, Dirk; Arthur, Haffner (2017). "Synthesis, Crystal Structure, and Chemical Bonding of Ba2SiP4". Zeitschrift für Anorganische und Allgemeine Chemie. 643 (21): 1717–1720. doi:10.1002/zaac.201700320. ISSN 1521-3749.
  41. ^ Haffner, Arthur; Weippert, Valentin; Johrendt, Dirk (2019-11-08). "Polymorphism of Ba 2 SiP 4: Polymorphism of Ba 2 SiP 4". Zeitschrift für anorganische und allgemeine Chemie. doi:10.1002/zaac.201900188.
  42. ^ Eisenmann, Brigitte; Jordan, Hanna; Schäfer, Herbert (1984). "Ba3Si4P6, eine neue Zintlphase mit vernetzten Si4P5-Käfigen/On Ba3Si4P6, a New Zintl Phase with Connected Si4P5 Cages" (PDF). Zeitschrift für Naturforschung B. 39 (7): 864–867. doi:10.1515/znb-1984-0705. S2CID 94537299.
  43. ^ Yox, Philip; Lee, Shannon J.; Wang, Lin-lin; Jing, Dapeng; Kovnir, Kirill (2021-04-01). "Crystal Structure and Properties of Layered Pnictides BaCuSi 2 Pn 3 (Pn = P, As)". Inorganic Chemistry. 60 (8): 5627–5634. doi:10.1021/acs.inorgchem.0c03636. ISSN 0020-1669. PMID 33794094. S2CID 232762736.
  44. ^ a b Fehrmann, Birgit; Jeitschko, Wolfgang. "THE PHOSPHIDOSILICATE-POLYPHOSPHIDES LaSiP3 AND Th2SiP5". www.xray.cz. Retrieved 2 June 2017.
  45. ^ a b c d Kaiser, Peter; Jeitschko, Wolfgang (July 1996). "The Rare Earth Silicon PhosphidesLnSi2P6(Ln= La, Ce, Pr, and Nd)". Journal of Solid State Chemistry. 124 (2): 346–352. Bibcode:1996JSSCh.124..346K. doi:10.1006/jssc.1996.0248.
  46. ^ a b Wang, Jian; Greenfield, Joshua T.; Kovnir, Kirill (2017-07-17). "Synthesis, Crystal Structure, and Magnetic Properties of R 2 Mg 3 SiPn 6 (R = La, Ce; Pn = P, As)". Inorganic Chemistry. 56 (14): 8348–8354. doi:10.1021/acs.inorgchem.7b01015. ISSN 0020-1669.
  47. ^ Hayakawa, Hiroshi; Ono, Shuitiro; Kobayashi, Akiko; Sasaki, Yukiyoshi (1978). "セリウムケイ素トリリン化物(CeSiP3)の結晶構造" [Crystal structure of cerium silicon triphosphide (CeSiP3)]. Nippon Kagaku Kaishi (9): 1214–1220. doi:10.1246/nikkashi.1978.1214.
  48. ^ a b Perrier, Ch.; Kirschen, M.; Vincent, H.; Gottlieb, U.; Chenevier, B.; Madar, R. (1997). "Synthesis and Crystal Structures of Two New Platinum Phosphosilicides, PtSi3P2and PtSi2P2; Electrical Resistivity of PtSi3P2". Journal of Solid State Chemistry. 133 (2): 473–478. Bibcode:1997JSSCh.133..473P. doi:10.1006/jssc.1997.7512.