1,4-Benzoquinone
| |||
Names | |||
---|---|---|---|
Preferred IUPAC name
Cyclohexa-2,5-diene-1,4-dione[1] | |||
Other names | |||
Identifiers | |||
3D model (JSmol)
|
|||
3DMet | |||
773967 | |||
ChEBI | |||
ChEMBL | |||
ChemSpider | |||
ECHA InfoCard | 100.003.097 | ||
EC Number |
| ||
2741 | |||
KEGG | |||
PubChem CID
|
|||
RTECS number |
| ||
UNII | |||
UN number | 2587 | ||
CompTox Dashboard (EPA)
|
|||
| |||
| |||
Properties | |||
C6H4O2 | |||
Molar mass | 108.096 g·mol−1 | ||
Appearance | Yellow solid | ||
Odor | Acrid, chlorine-like[2] | ||
Density | 1.318 g/cm3 at 20 °C | ||
Melting point | 115 °C (239 °F; 388 K) | ||
Boiling point | Sublimes | ||
11 g/L (18 °C) | |||
Solubility | Slightly soluble in petroleum ether; soluble in acetone; 10% in ethanol, benzene, diethyl ether | ||
Vapor pressure | 0.1 mmHg (25 °C)[2] | ||
−38.4·10−6 cm3/mol | |||
Hazards | |||
Occupational safety and health (OHS/OSH): | |||
Main hazards
|
Toxic | ||
GHS labelling: | |||
Danger | |||
H301, H315, H319, H331, H335, H400 | |||
P261, P264, P270, P271, P273, P280, P301 P310, P302 P352, P304 P340, P305 P351 P338, P311, P312, P321, P330, P332 P313, P337 P313, P362, P391, P403 P233, P405, P501 | |||
Flash point | 38 to 93 °C; 100 to 200 °F; 311 to 366 K[2] | ||
Lethal dose or concentration (LD, LC): | |||
LD50 (median dose)
|
296 mg/kg (mammal, subcutaneous) 93.8 mg/kg (mouse, subcutaneous) 8.5 mg/kg (mouse, IP) 5.6 mg/kg (rat) 130 mg/kg (rat, oral) 25 mg/kg (rat, IV)[3] | ||
NIOSH (US health exposure limits): | |||
PEL (Permissible)
|
TWA 0.4 mg/m3 (0.1 ppm)[2] | ||
REL (Recommended)
|
TWA 0.4 mg/m3 (0.1 ppm)[2] | ||
IDLH (Immediate danger)
|
100 mg/m3[2] | ||
Related compounds | |||
Related compounds
|
1,2-Benzoquinone | ||
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
|
1,4-Benzoquinone, commonly known as para-quinone, is a chemical compound with the formula C6H4O2. In a pure state, it forms bright-yellow crystals with a characteristic irritating odor, resembling that of chlorine, bleach, and hot plastic or formaldehyde. This six-membered ring compound is the oxidized derivative of 1,4-hydroquinone.[4] The molecule is multifunctional: it exhibits properties of a ketone, being able to form oximes; an oxidant, forming the dihydroxy derivative; and an alkene, undergoing addition reactions, especially those typical for α,β-unsaturated ketones. 1,4-Benzoquinone is sensitive toward both strong mineral acids and alkali, which cause condensation and decomposition of the compound.[5][6]
Preparation
[edit]1,4-Benzoquinone is prepared industrially by oxidation of hydroquinone, which can be obtained by several routes. One route involves oxidation of diisopropylbenzene and the Hock rearrangement. The net reaction can be represented as follows:
- C6H4(CHMe2)2 3 O2 → C6H4O2 2 OCMe2 H2O
The reaction proceeds via the bis(hydroperoxide) and the hydroquinone. Acetone is a coproduct.[7]
Another major process involves the direct hydroxylation of phenol by acidic hydrogen peroxide: C6H5OH H2O2 → C6H4(OH)2 H2O Both hydroquinone and catechol are produced. Subsequent oxidation of the hydroquinone gives the quinone.[8]
Quinone was originally prepared industrially by oxidation of aniline, for example by manganese dioxide.[9] This method is mainly practiced in PRC where environmental regulations are more relaxed.
Oxidation of hydroquinone is facile.[4][10] One such method makes use of hydrogen peroxide as the oxidizer and iodine or an iodine salt as a catalyst for the oxidation occurring in a polar solvent; e.g. isopropyl alcohol.[11]
When heated to near its melting point, 1,4-benzoquinone sublimes, even at atmospheric pressure, allowing for an effective purification. Impure samples are often dark-colored due to the presence of quinhydrone, a dark green 1:1 charge-transfer complex of quinone with hydroquinone.[12]
Structure and redox
[edit]Benzoquinone is a planar molecule with localized, alternating C=C, C=O, and C–C bonds. Reduction gives the semiquinone anion C6H4O2−}, which adopts a more delocalized structure. Further reduction coupled to protonation gives the hydroquinone, wherein the C6 ring is fully delocalized.[13]
Reactions and applications
[edit]Quinone is mainly used as a precursor to hydroquinone, which is used in photography and rubber manufacture as a reducing agent and antioxidant.[8] Benzoquinonium is a skeletal muscle relaxant, ganglion blocking agent that is made from benzoquinone.[14]
Organic synthesis
[edit]It is used as a hydrogen acceptor and oxidant in organic synthesis.[15] 1,4-Benzoquinone serves as a dehydrogenation reagent. It is also used as a dienophile in Diels Alder reactions.[16]
Benzoquinone reacts with acetic anhydride and sulfuric acid to give the triacetate of hydroxyquinol.[17][18] This reaction is called the Thiele reaction or Thiele–Winter reaction[19][20] after Johannes Thiele, who first described it in 1898, and after Ernst Winter, who further described its reaction mechanism in 1900. An application is found in this step of the total synthesis of Metachromin A:[21]
Benzoquinone is also used to suppress double-bond migration during olefin metathesis reactions.
An acidic potassium iodide solution reduces a solution of benzoquinone to hydroquinone, which can be reoxidized back to the quinone with a solution of silver nitrate.
Due to its ability to function as an oxidizer, 1,4-benzoquinone can be found in methods using the Wacker-Tsuji oxidation, wherein a palladium salt catalyzes the conversion of an alkene to a ketone. This reaction is typically carried out using pressurized oxygen as the oxidizer, but benzoquinone can sometimes preferred. It is also used as a reagent in some variants on Wacker oxidations.
1,4-Benzoquinone is used in the synthesis of Bromadol and related analogs.
Related 1,4-benzoquinones
[edit]2,3-Dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) is a stronger oxidant and dehydrogenation agent than 1,4-benzoquinone.[23] Chloranil 1,4-C6Cl4O2 is another potent oxidant and dehydrogenation agent. Monochloro-p-benzoquinone is yet another but milder oxidant.[24]
Metabolism
[edit]1,4-Benzoquinone is a toxic metabolite found in human blood and can be used to track exposure to benzene or mixtures containing benzene and benzene compounds, such as petrol.[25] The compound can interfere with cellular respiration, and kidney damage has been found in animals receiving severe exposure. It is excreted in its original form and also as variations of its own metabolite, hydroquinone.[9]
Safety
[edit]1,4-Benzoquinone is able to stain skin dark brown, cause erythema (redness, rashes on skin) and lead on to localized tissue necrosis. It is particularly irritating to the eyes and respiratory system. Its ability to sublime at commonly encountered temperatures allows for a greater airborne exposure risk than might be expected for a room-temperature solid. IARC has found insufficient evidence to comment on the compound's carcinogenicity, but has noted that it can easily pass into the bloodstream and that it showed activity in depressing bone marrow production in mice and can inhibit protease enzymes involved in cellular apoptosis.[9]
See also
[edit]- Tetrahydroxybenzoquinone
- Benzoquinonetetracarboxylic acid
- 1,2-Benzoquinone
- Quinones
- Duroquinone
- Ardisiaquinone
References
[edit]- ^ a b Nomenclature of Organic Chemistry : IUPAC Recommendations and Preferred Names 2013 (Blue Book). Cambridge: The Royal Society of Chemistry. 2014. pp. 723–724. doi:10.1039/9781849733069-FP001. ISBN 978-0-85404-182-4.
- ^ a b c d e f NIOSH Pocket Guide to Chemical Hazards. "#0542". National Institute for Occupational Safety and Health (NIOSH).
- ^ "Quinone". Immediately Dangerous to Life or Health Concentrations (IDLH). National Institute for Occupational Safety and Health (NIOSH).
- ^ a b Underwood, H. W. Jr.; Walsh, W. L. (1936). "Quinone". Organic Syntheses. 16: 73. doi:10.15227/orgsyn.002.0085; Collected Volumes, vol. 2, p. 553.
- ^ Patai, Saul; Rappoport, Zvi, eds. (1988). The Quinonoid Compounds: Vol. 1 (1988). doi:10.1002/9780470772119. ISBN 978-0-470-77211-9.
- ^ Patai, Saul; Rappoport, Zvi, eds. (1988). The Quinonoid Compounds: Vol. 2 (1988). doi:10.1002/9780470772126. ISBN 978-0-470-77212-6.
- ^ Gerhard Franz, Roger A. Sheldon "Oxidation" in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, 2000 doi:10.1002/14356007.a18_261
- ^ a b Phillip M. Hudnall "Hydroquinone" in Ullmann's Encyclopedia of Industrial Chemistry, 2002, Wiley-VCH, Weinheim. 2005 Wiley-VCH, Weinheim. doi:10.1002/14356007.a13_499.
- ^ a b c "1,4-Benzoquinone (para-Quinone)". Re-evaluation of Some Organic Chemicals, Hydrazine and Hydrogen Peroxide (Part 1, Part 2, Part 3) (PDF). IARC Monographs.
- ^ Vliet, E. B. (1922). "Quinone". Organic Syntheses. 2: 85. doi:10.15227/orgsyn.016.0073; Collected Volumes, vol. 1, p. 482.
- ^ US patent 4973720, "Process for the preparation of p-benzoquinone"
- ^ Sakurai, T. (1968). "On the refinement of the crystal structures of phenoquinone and monoclinic quinhydrone". Acta Crystallographica Section B. 24 (3): 403–412. Bibcode:1968AcCrB..24..403S. doi:10.1107/S0567740868002451.
- ^ a b Lü, Jian-Ming; Rosokha, Sergiy V; Neretin, Ivan S; Kochi, Jay K (2006). "Quinones as Electron Acceptors. X-Ray Structures, Spectral (EPR, UV−vis) Characteristics and Electron-Transfer Reactivities of Their Reduced Anion Radicals as Separated vs Contact Ion Pairs". Journal of the American Chemical Society. 128 (51): 16708–19. doi:10.1021/ja066471o. PMID 17177421.
- ^ Cavallito, Chester J.; Soria, Albert E.; Hoppe, James O. (1950). "Amino- and Ammonium-alkylaminobenzoquinones as Curarimimetic Agents". Journal of the American Chemical Society. 72 (6): 2661–2665. doi:10.1021/ja01162a088. ISSN 0002-7863.
- ^ Yang, T.-K.; Shen, C.-Y. (2004). "1,4-Benzoquinone". In L. Paquette (ed.). Encyclopedia of Reagents for Organic Synthesis. New York: J. Wiley & Sons. doi:10.1002/047084289X.rb033. ISBN 978-0-471-93623-7.
- ^ Oda, M.; Kawase, T.; Okada, T.; Enomoto, T. (1996). "2-Cyclohexene-1,4-dione". Organic Syntheses. 73: 253. doi:10.15227/orgsyn.073.0253; Collected Volumes, vol. 9, p. 186.
- ^ Vliet, E. B. (1941). "Hydroquinone Triacetate". Organic Syntheses. 1: 317. doi:10.15227/orgsyn.004.0035.
- ^ Knowles, M. B. (1952). "Process for production of 2,4,5-trihydroxyacetophenone" (PDF). Google Patents. Eastman Kodak Co. Retrieved 24 December 2014.
- ^ McOmie, J. F. W.; Blatchly, J. M. (2011). "The Thiele-Winter Acetoxylation of Quinones". Organic Reactions. Vol. 19. pp. 199–277. doi:10.1002/0471264180.or019.03. ISBN 978-0-471-19619-8.
- ^ Thiele, J. (1898). "Ueber die Einwirkung von Essigsäure-anhydrid auf Chinon und auf Dibenzoylstyrol". Berichte der Deutschen Chemischen Gesellschaft. 31 (1): 1247–1249. doi:10.1002/cber.189803101226.
- ^ Almeida, W. P.; Correia, C. R. D. (1999). "Stereoselective Total Synthesis and Enantioselective Formal Synthesis of the Antineoplastic Sesquiterpene Quinone Metachromin A" (PDF). Journal of the Brazilian Chemical Society. 10 (5): 401–414. doi:10.1590/S0103-50531999500500011.
- ^ Moussa, Jamal; Guyard-Duhayon, Carine; Herson, Patrick; Amouri, Hani; Rager, Marie Noelle; Jutand, Anny (2004). "η5-Semiquinone Complexes and the Related η4-Benzoquinone of (Pentamethylcyclopentadienyl)rhodium and -iridium: Synthesis, Structures, Hydrogen Bonding, and Electrochemical Behavior". Organometallics. 23 (26): 6231–6238. doi:10.1021/om049292t.
- ^ Vogel, E.; Klug, W.; Breuer, A. (1974). "1,6-Methano[10]annulene". Organic Syntheses. 54: 11. doi:10.15227/orgsyn.054.0011; Collected Volumes, vol. 6, p. 731.
- ^ Harman, R. E. (1955). "Chloro-p-benzoquinone". Organic Syntheses. 35: 22. doi:10.15227/orgsyn.035.0022; Collected Volumes, vol. 4, p. 148.
- ^ Lin, Y. S.; McKelvey, W.; Waidyanatha, S.; Rappaport, S. M. (2006). "Variability of Albumin Adducts of 1,4-Benzoquinone, a Toxic Metabolite of Benzene, in Human Volunteers". Biomarkers. 11 (1): 14–27. doi:10.1080/13547500500382975. PMID 16484134. S2CID 13198966.