Jump to content

Molybdenum dioxide

From Wikipedia, the free encyclopedia
(Redirected from MoO2)
Molybdenum dioxide
Names
IUPAC name
Molybdenum(IV) oxide
Other names
Molybdenum dioxide
Tugarinovite
Identifiers
ECHA InfoCard 100.038.746 Edit this at Wikidata
Properties
MoO2
Molar mass 127.94 g/mol
Appearance brownish-violet solid
Density 6.47 g/cm3
Melting point 1,100 °C (2,010 °F; 1,370 K) decomposes
insoluble
Solubility insoluble in alkalies, HCl, HF
slightly soluble in hot H2SO4
41.0·10−6 cm3/mol
Structure
Distorted rutile (monoclinic)
Octahedral (MoIV); trigonal (O−II)
Hazards
Flash point Non-flammable
Related compounds
Other anions
Molybdenum disulfide
Other cations
Chromium(IV) oxide
Tungsten(IV) oxide
"Molybdenum blue"
Molybdenum trioxide
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)

Molybdenum dioxide is the chemical compound with the formula MoO2. It is a violet-colored solid and is a metallic conductor. The mineralogical form of this compound is called tugarinovite, and is only very rarely found.

Structure

[edit]

It crystallizes in a monoclinic cell, and has a distorted rutile, (TiO2) crystal structure. In TiO2 the oxide anions are close packed and titanium atoms occupy half of the octahedral interstices (holes). In MoO2 the octahedra are distorted, the Mo atoms are off-centre, leading to alternating short and long Mo – Mo distances and Mo-Mo bonding. The short Mo – Mo distance is 251 pm which is less than the Mo – Mo distance in the metal, 272.5 pm. The bond length is shorter than would be expected for a single bond. The bonding is complex and involves a delocalisation of some of the Mo electrons in a conductance band accounting for the metallic conductivity.[1]

Preparation

[edit]

MoO2 can be prepared :

  • by reduction of MoO3 with Mo over the course of 70 hours at 800 °C (1,470 °F). The tungsten analogue, WO2, is prepared similarly.
2 MoO3 Mo → 3 MoO2
  • by reducing MoO3 with H2 or NH3 below 470 °C (878 °F) [2]

Single crystals are obtained by chemical transport using iodine. Iodine reversibly converts MoO2 into the volatile species MoO2I2.[3]

Uses

[edit]

Molybdenum dioxide is a constituent of "technical molybdenum trioxide" produced during the industrial processing of MoS2:[4][5]

2 MoS2 7 O2 → 2 MoO3 4 SO2
MoS2 6 MoO3 → 7 MoO2 2 SO2
2 MoO2 O2 → 2 MoO3

MoO2 has been reported as catalysing the dehydrogenation of alcohols,[6] the reformation of hydrocarbons[7] and biodiesel.[8] Molybdenum nano-wires have been produced by reducing MoO2 deposited on graphite.[9] Molybdenum dioxide has also been suggested as possible anode material for Li-ion batteries.[10][11]

References

[edit]
  1. ^ Oxides: Solid state chemistry McCarroll W.H. Encyclopedia of Inorganic Chemistry Ed R. Bruce King, (1994), John Wiley & sons ISBN 0-471-93620-0
  2. ^ Cotton, F. Albert; Wilkinson, Geoffrey; Murillo, Carlos A.; Bochmann, Manfred (1999), Advanced Inorganic Chemistry (6th ed.), New York: Wiley-Interscience, ISBN 0-471-19957-5
  3. ^ Conroy, L. E.; Ben-Dor, L. "Molybdenum(IV) Oxide and Tungsten(IV) Oxides Single-Crystals" Inorganic Syntheses 1995, volume 30, pp. 105–107. ISBN 0-471-30508-1
  4. ^ Metallurgical furnaces Jorg Grzella, Peter Sturm, Joachim Kruger, Markus A. Reuter, Carina Kogler, Thomas Probst, Ullmans Encyclopedia of Industrial Chemistry
  5. ^ "Thermal Analysis and Kinetics of Oxidation of Molybdenum Sulfides" Y. Shigegaki, S.K. Basu, M.Wakihara and M. Taniguchi, J. Therm. Analysis 34 (1988), 1427-1440
  6. ^ A. A. Balandin and I. D. Rozhdestvenskaya, Russian Chemical Bulletin, 8, 11, (1959), 1573 doi:10.1007/BF00914749
  7. ^ Molybdenum based catalysts. I. MoO2 as the active species in the reforming of hydrocarbons A. Katrib, P. Leflaive, L. Hilaire and G. Maire Catalysis Letters, 38, 1–2, (1996) doi:10.1007/BF00806906
  8. ^ Catalytic partial oxidation of a biodiesel surrogate over molybdenum dioxide, C.M. Cuba-Torres, et al, Fuel (2015), doi:10.1016/j.fuel.2015.01.003
  9. ^ Synthesis of Molybdenum Nanowires with Millimeter-Scale Lengths Using Electrochemical Step Edge Decoration M. P. Zach, K. Inazu, K. H. Ng, J. C. Hemminger, and R. M. Penner Chem. Mater. (2002),14, 3206 doi:10.1021/cm020249a
  10. ^ Shi, Yifeng; Guo, Bingkun; Corr, Serena A.; Shi, Qihui; Hu, Yong-Sheng; Heier, Kevin R.; Chen, Liquan; Seshadri, Ram; Stucky, Galen D. (2009-12-09). "Ordered Mesoporous Metallic MoO2 Materials with Highly Reversible Lithium Storage Capacity". Nano Letters. 9 (12): 4215–4220. doi:10.1021/nl902423a. ISSN 1530-6984. PMID 19775084.
  11. ^ Kim, Hyung-Seok; Cook, John B.; Tolbert, Sarah H.; Dunn, Bruce (2015-01-01). "The Development of Pseudocapacitive Properties in Nanosized-MoO2". Journal of the Electrochemical Society. 162 (5): A5083–A5090. doi:10.1149/2.0141505jes. ISSN 0013-4651. OSTI 1370243.