Jump to content

Infinite-order pentagonal tiling

From Wikipedia, the free encyclopedia
Infinite-order pentagonal tiling
Infinite-order pentagonal tiling
Poincaré disk model of the hyperbolic plane
Type Hyperbolic regular tiling
Vertex configuration 5
Schläfli symbol {5,∞}
Wythoff symbol ∞ | 5 2
Coxeter diagram
Symmetry group [∞,5], (*∞52)
Dual Order-5 apeirogonal tiling
Properties Vertex-transitive, edge-transitive, face-transitive

In 2-dimensional hyperbolic geometry, the infinite-order pentagonal tiling is a regular tiling. It has Schläfli symbol of {5,∞}. All vertices are ideal, located at "infinity", seen on the boundary of the Poincaré hyperbolic disk projection.

Symmetry

[edit]

There is a half symmetry form, , seen with alternating colors:

[edit]

This tiling is topologically related as a part of sequence of regular polyhedra and tilings with vertex figure (5n).

Finite Compact hyperbolic Paracompact

{5,3}

{5,4}

{5,5}

{5,6}

{5,7}

{5,8}...

{5,∞}
Paracompact uniform apeirogonal/pentagonal tilings
Symmetry: [∞,5], (*∞52) [∞,5]
(∞52)
[1 ,∞,5]
(*∞55)
[∞,5 ]
(5*∞)
{∞,5} t{∞,5} r{∞,5} 2t{∞,5}=t{5,∞} 2r{∞,5}={5,∞} rr{∞,5} tr{∞,5} sr{∞,5} h{∞,5} h2{∞,5} s{5,∞}
Uniform duals
V∞5 V5.∞.∞ V5.∞.5.∞ V∞.10.10 V5 V4.5.4.∞ V4.10.∞ V3.3.5.3.∞ V(∞.5)5 V3.5.3.5.3.∞

See also

[edit]

References

[edit]
  • John H. Conway; Heidi Burgiel; Chaim Goodman-Strauss (2008). "Chapter 19, The Hyperbolic Archimedean Tessellations". The Symmetries of Things. ISBN 978-1-56881-220-5.
  • H. S. M. Coxeter (1999). "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. ISBN 0-486-40919-8. LCCN 99035678.
[edit]