File:Moon elevation.stl
Page contents not supported in other languages.
Tools
Actions
General
In other projects
Appearance
Size of this PNG preview of this STL file: 800 × 600 pixels. Other resolutions: 320 × 240 pixels | 640 × 480 pixels | 1,024 × 768 pixels | 1,280 × 960 pixels | 2,560 × 1,920 pixels | 5,120 × 3,840 pixels.
Original file (5,120 × 2,880 pixels, file size: 25.07 MB, MIME type: application/sla)
This is a file from the Wikimedia Commons. Information from its description page there is shown below. Commons is a freely licensed media file repository. You can help. |
View Moon elevation.stl on viewstl.com
Summary
DescriptionMoon elevation.stl |
English: Moon 10-times-exaggerated elevation model by CMG Lee using LRO LOLA data. |
Date | |
Source | Own work |
Author | Cmglee |
Other versions |
Python source
#!/usr/bin/env python
exaggeration = 10
header = ('Moon %s-times-exaggerated elevation model by CMG Lee using LRO LOLA data.'
% (exaggeration))
path_png_alt = 'moon_elevation.png' ## 1-channel equirectangular PNG
luma_datum = 128 ## image intensity level (of 0-255) of datum
radius_datum = 1737.4 ## mean radius of zero level in km
f_wgs84 = 1 - 1736.0 / 1737.4 ## WGS84 flattening factor
km_per_luma = (9.094 10.786) / 255 * exaggeration ## min and max elevations in km
scale = 1e-2 ## overall scale of model in km^-1
lat_offset = 0.0 / 12 ## rotation around planet axis in revolutions
n_division = 200 ## each cubic face divided into n_division^2 squares
class Png:
def __init__(self, path):
(self.width, self.height, self.pixels, self.metadatas) = png.Reader(path).read_flat()
def __str__(self): return str((self.width, self.height, len(self.pixels), self.metadatas))
import time, re, math, struct, png
time.start = time.time()
def log(string): print('%6.3fs\t%s' % (time.time() - time.start, string))
def fmt(string): ## string.format(**vars()) using tags {expression!format} by CMG Lee
def f(tag): i_sep = tag.rfind('!'); return (re.sub('\.0 $', '', str(eval(tag[1:-1])))
if (i_sep < 0) else ('{:%s}' % tag[i_sep 1:-1]).format(eval(tag[1:i_sep])))
return (re.sub(r'(?<!{){[^{}] }', lambda m:f(m.group()), string)
.replace('{{', '{').replace('}}', '}'))
def append(obj, string): return obj.append(fmt(string))
def tabbify(cellss, separator='|'):
cellpadss = [list(rows) [''] * (len(max(cellss, key=len)) - len(rows)) for rows in cellss]
fmts = ['%%%ds' % (max([len(str(cell)) for cell in cols])) for cols in zip(*cellpadss)]
return '\n'.join([separator.join(fmts) % tuple(rows) for rows in cellpadss])
def hex_rgb(colour): ## convert [#]RGB to #RRGGBB and [#]RRGGBB to #RRGGBB
return '#%s' % (colour if len(colour) > 4 else ''.join([c * 2 for c in colour])).lstrip('#')
def viscam_colour(colour):
colour_hex = hex_rgb(colour)
colour_top5bits = [int(colour_hex[i:i 2], 16) >> 3 for i in range(1,7,2)]
return (1 << 15) (colour_top5bits[0] << 10) (colour_top5bits[1] << 5) colour_top5bits[2]
def roundm(x, multiple=1):
if (isinstance(x, tuple)): return tuple(roundm(list(x), multiple))
elif (isinstance(x, list )): return [roundm(x_i, multiple) for x_i in x]
else: return int(math.floor(float(x) / multiple 0.5)) * multiple
def average(xs): return None if (len(xs) == 0) else float(sum(xs)) / len(xs)
def flatten(lss): return [l for ls in lss for l in ls]
def rotate(facetss, degs): ## around x then y then z axes
(deg_x,deg_y,deg_z) = degs
(sin_x,cos_x) = (math.sin(math.radians(deg_x)), math.cos(math.radians(deg_x)))
(sin_y,cos_y) = (math.sin(math.radians(deg_y)), math.cos(math.radians(deg_y)))
(sin_z,cos_z) = (math.sin(math.radians(deg_z)), math.cos(math.radians(deg_z)))
facet_rotatess = []
for facets in facetss:
facet_rotates = []
for i_point in range(4):
(x, y, z) = [facets[3 * i_point i_xyz] for i_xyz in range(3)]
if (x is None or y is None or z is None):
facet_rotates = [x, y, z]
else:
(y, z) = (y * cos_x - z * sin_x, y * sin_x z * cos_x) ## rotate about x
(x, z) = (x * cos_y z * sin_y, -x * sin_y z * cos_y) ## rotate about y
(x, y) = (x * cos_z - y * sin_z, x * sin_z y * cos_z) ## rotate about z
facet_rotates = [round(value, 9) for value in [x, y, z]]
facet_rotatess.append(facet_rotates)
return facet_rotatess
def translate(facetss, ds): ## ds = (dx,dy,dz)
return [facets[:3] [facets[3 * i_point i_xyz] ds[i_xyz]
for i_point in range(1,4) for i_xyz in range(3)]
for facets in facetss]
def flip(facetss):
return [facets[:3] facets[6:9] facets[3:6] facets[9:] for facets in facetss]
def cube_xyz_to_sphere_xyz(cube_xyzs):
(x,y,z) = [float(xyz) for xyz in cube_xyzs]
(x_squared,y_squared,z_squared) = (x * x,y * y,z * z)
return (x * (1 - (y_squared z_squared) / 2 y_squared * z_squared / 3) ** 0.5,
y * (1 - (x_squared z_squared) / 2 x_squared * z_squared / 3) ** 0.5,
z * (1 - (y_squared x_squared) / 2 y_squared * x_squared / 3) ** 0.5)
def sphere_xyz_to_lla(sphere_xyzs):
(x,y,z) = sphere_xyzs
alt = (x * x y * y z * z) ** 0.5
lon = math.atan2(y, x)
lat = math.asin(z / alt)
return (lat,lon,alt)
deg_90 = math.pi / 2
def find_alt(lat_lons, altss):
(lat,lon) = lat_lons
if (lat == deg_90): alt = average(altss[ 0])
elif (lat == -deg_90): alt = average(altss[-1])
else:
(width,height) = (len(altss[0]),len(altss))
x = (0.5 lon / (deg_90 * 4) lat_offset) * width
y = (0.5 - lat / (deg_90 * 2) ) * height
(x_int,y_int) = (int(x) , int(y) )
(x_dec,y_dec) = (x - x_int, y - y_int)
(x0,x1) = (x_int % width , (x_int 1) % width )
(y0,y1) = (y_int % height, (y_int 1) % height)
alt = ((altss[y0][x0] * (1 - x_dec) altss[y1][x0] * x_dec) * (1 - y_dec)
(altss[y0][x1] * (1 - x_dec) altss[y1][x1] * x_dec) * y_dec)
# print(map(math.degrees, lat_lons), y,x, alt)
return alt
def radius_wgs84(lat):
if (lat in radius_wgs84.cachess): return radius_wgs84.cachess[lat]
(sin_lat, cos_lat) = (math.sin(lat), math.cos(lat))
ff = (1 - f_wgs84) ** 2
c = 1 / (cos_lat ** 2 ff * sin_lat ** 2) ** 0.5
s = c * ff
radius_c_s_s = (radius_datum * c, radius_datum * s)
radius_wgs84.cachess[lat] = radius_c_s_s
return radius_c_s_s
radius_wgs84.cachess = {}
def lla_to_sphere_xyz(llas):
(lat,lon,alt) = llas
(sin_lat,sin_lon) = (math.sin(lat),math.sin(lon))
(cos_lat,cos_lon) = (math.cos(lat),math.cos(lon))
(radius_c, radius_s) = [(c_s_radius alt * km_per_luma) * scale
for c_s_radius in radius_wgs84(lat)]
return (radius_c * cos_lat * cos_lon,radius_c * cos_lat * sin_lon,radius_s * sin_lat)
## cube xyz -> smooth sphere xyz -> sphere ll -> image xy -> bumpy sphere xyz
def cube_xyz_alt_to_xyza(cube_xyzs, altss):
return sphere_xyz_alt_to_xyza(cube_xyz_to_sphere_xyz(cube_xyzs), altss)
def sphere_xyz_alt_to_xyza(sphere_xyzs, altss):
(lat,lon,alt) = sphere_xyz_to_lla(sphere_xyzs)
alt = find_alt((lat,lon), altss)
lla_alts = [list(lla_to_sphere_xyz((lat,lon,alt))), alt]
return lla_alts
log("Read elevation data")
png_alt = Png(path_png_alt)
if (png_alt.metadatas['planes'] != 1): print("%s not 1-channel PNG" % (path_png_alt)); sys.exit(1)
log(png_alt)
altss = [[png_alt.pixels[png_alt.width * y x] - luma_datum
for x in range(png_alt.width)] for y in range(png_alt.height)] ## altss[y][x]
log("Find vertices")
k = 2.0 / n_division
range_k = range(n_division 1)
face_vertex_llassss = [ ## [0=top][i_y][i_x][xyz,alt]
[[cube_xyz_alt_to_xyza((x*k-1,y*k-1, 1), altss) for y in range_k] for x in range_k],
[[cube_xyz_alt_to_xyza((x*k-1, -1,y*k-1), altss) for y in range_k] for x in range_k],
[[cube_xyz_alt_to_xyza(( 1,x*k-1,y*k-1), altss) for y in range_k] for x in range_k],
[[cube_xyz_alt_to_xyza((y*k-1,x*k-1, -1), altss) for y in range_k] for x in range_k],
[[cube_xyz_alt_to_xyza((y*k-1, 1,x*k-1), altss) for y in range_k] for x in range_k],
[[cube_xyz_alt_to_xyza(( -1,y*k-1,x*k-1), altss) for y in range_k] for x in range_k],
]
log("Add facets")
facetss = []
for (i_face,face_vertex_llasss) in enumerate(face_vertex_llassss):
for v in range(n_division):
for u in range(n_division):
(xyz00, alt00) = face_vertex_llasss[v ][u ]
(xyz01, alt01) = face_vertex_llasss[v ][u 1]
(xyz10, alt10) = face_vertex_llasss[v 1][u ]
(xyz11, alt11) = face_vertex_llasss[v 1][u 1]
(xyz_m, alt_m) = sphere_xyz_alt_to_xyza([average(xyzs) for xyzs in
zip(*(xyz00,xyz01,xyz10,xyz11))], altss)
if (alt_m > max(alt00,alt01,alt10,alt11) or alt_m < min(alt00,alt01,alt10,alt11)):
facetss.append([None,0,0] xyz_m xyz00 xyz10)
facetss.append([None,0,0] xyz_m xyz10 xyz11)
facetss.append([None,0,0] xyz_m xyz11 xyz01)
facetss.append([None,0,0] xyz_m xyz01 xyz00)
else:
if (abs(alt00 - alt11) < abs(alt01 - alt10)):
facetss.append([None,0,0] xyz00 xyz10 xyz11)
facetss.append([None,0,0] xyz11 xyz01 xyz00)
else:
facetss.append([None,0,0] xyz10 xyz11 xyz01)
facetss.append([None,0,0] xyz01 xyz00 xyz10)
log("Calculate normals")
for facets in facetss:
if (facets[0] is None or facets[1] is None or facets[2] is None):
us = [facets[i_xyz 9] - facets[i_xyz 6] for i_xyz in range(3)]
vs = [facets[i_xyz 6] - facets[i_xyz 3] for i_xyz in range(3)]
normals = [us[1]*vs[2] - us[2]*vs[1], us[2]*vs[0] - us[0]*vs[2], us[0]*vs[1] - us[1]*vs[0]]
normal_length = sum([component * component for component in normals]) ** 0.5
facets[:3] = [-round(component / normal_length, 10) for component in normals]
# log(tabbify([['N%s' % (xyz ) for xyz in list('xyz')]
# ['%s%d' % (xyz, n) for n in range(3) for xyz in list('XYZ')] ['RGB']] facetss))
log("Compile STL")
outss = ([[('STL\n\n%-73s\n\n' % (header[:73])).encode('utf-8'), struct.pack('<L',len(facetss))]]
[[struct.pack('<f',float(value)) for value in facets[:12]]
[struct.pack('<H',0 if (len(facets) <= 12) else
viscam_colour(facets[12]))] for facets in facetss])
out = b''.join([bytes(out) for outs in outss for out in outs])
# out = ('\n\n## Python script to generate STL\n\n%s\n' % (open(__file__).read())).encode('utf-8')
log("Write STL")
with open(__file__[:__file__.rfind('.')] '.stl', 'wb') as f_out: f_out.write(out)
log("#bytes:%d\t#facets:%d\ttitle:\"%-73s\"" % (len(out), len(facetss), header[:73]))
Licensing
I, the copyright holder of this work, hereby publish it under the following license:
This file is licensed under the Creative Commons Attribution-Share Alike 4.0 International license.
- You are free:
- to share – to copy, distribute and transmit the work
- to remix – to adapt the work
- Under the following conditions:
- attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.
The uploader of this file has agreed to the Wikimedia Foundation 3D patent license: This file and any 3D objects depicted in the file are both my own work. I hereby grant to each user, maker, or distributor of the object depicted in the file a worldwide, royalty-free, fully-paid-up, nonexclusive, irrevocable and perpetual license at no additional cost under any patent or patent application I own now or in the future, to make, have made, use, offer to sell, sell, import, and distribute this file and any 3D objects depicted in the file that would otherwise infringe any claims of any patents I hold now or in the future. Please note that in the event of any differences in meaning or interpretation between the original English version of this license and a translation, the original English version takes precedence. |
Items portrayed in this file
depicts
14 April 2018
File history
Click on a date/time to view the file as it appeared at that time.
Date/Time | Thumbnail | Dimensions | User | Comment | |
---|---|---|---|---|---|
current | 11:04, 14 April 2018 | 5,120 × 2,880 (25.07 MB) | Cmglee | User created page with UploadWizard |
File usage
The following 3 pages use this file:
Global file usage
The following other wikis use this file:
- Usage on crh.wikipedia.org
- Usage on en.wikiversity.org
- Usage on myv.wikipedia.org
- Usage on ro.wikipedia.org
- Usage on tk.wikipedia.org
- Usage on www.wikidata.org
Retrieved from "https://en.wikipedia.org/wiki/File:Moon_elevation.stl"