Jump to content

CXorf36

From Wikipedia, the free encyclopedia
DIPK2B
Identifiers
AliasesDIPK2B, 4930578C19Rik, DIA1R, EPQL1862, PRO3743, bA435K1.1, chromosome X open reading frame 36, CXorf36, divergent protein kinase domain 2B
External IDsOMIM: 300959; MGI: 1923155; HomoloGene: 23469; GeneCards: DIPK2B; OMA:DIPK2B - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_024689
NM_176819

NM_175228

RefSeq (protein)

NP_078965
NP_789789

NP_780437

Location (UCSC)Chr X: 45.15 – 45.2 MbChr X: 18.28 – 18.33 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Chromosome X open reading frame 36 (CXorf36) is a gene that in humans encodes a protein “hypothetical protein LOC79742”. This protein has a function that is not currently very well understood.[5][6] Other known aliases are “FLJ14103, DKFZp313K0825, FLJ55198, PRO3743, FLJ55198, hCG1981635, bA435K1.1,” and “4930578C19Rik.”[7]

Gene

[edit]

The CXorf36 gene is located at Xp11.3.

The location of the CXorf36 gene on chromosome X

It can be transcribed into 8 different transcript variants, which in turn can produce 6 different isoforms of the protein.[8]

The genomic DNA is 52,529 base pairs long,[5] while the longest mRNA that it produces is 4,735 bases long.

Gene Neighborhood

[edit]

CXorf36 is closely surrounded by the following genes on chromosome X:[5]

  • DUSP21
  • KDM6A
  • MIR222
  • TBX20

CXorf36 is also surrounded by two other genes on chromosome X that have been implicated in X-linked mental retardation.[9]

Protein

[edit]

The longest protein isoform that is produced by the CXorf36 gene is termed hypothetical protein LOC79742 isoform 1 and is 433 amino acids long.[10] The protein has a predicated molecular weight of 48.6 kDa and isoelectric point of 8.11.[11]

Domains

[edit]

The CXorf36 gene protein product contains a region of low complexity from position 16 to position 40.[12]

Post-translational Modification

[edit]

The CXorf36 protein is predicted to undergo phosphorylation at several serines, threonines, and tyrosines throughout the structure.[13] However, many of these sites are predicted at serines. There is also a predicted N-linked glycosylation site at position 100 on the protein product.[14]

Expression

[edit]

CXorf36 is shown to be expressed ubiquitously at low levels in various tissues throughout the body. It is expressed highly in the ciliary ganglion, ovary, and uterus corpus. However, highest expression is seen in the trigeminal ganglion tissue.[15]

Conservation

[edit]

CXorf36 has one paralog in humans known as C3orf58.[16] Orthologs have been found in all mammals and through numerous eukaryotes.[17] However, conservation of the full gene halts past this, most likely a result of duplication from the ancestral gene into CXorf36 and C3orf58. The full list of organisms in which orthologs have been found is given below.

References

[edit]
  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000147113Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000037358Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ a b c "Entrez Gene: CXorf36". Retrieved 2011-04-28.
  6. ^ Thiselton DL, McDowall J, Brandau O, Ramser J, d'Esposito F, Bhattacharya SS, Ross MT, Hardcastle AJ, Meindl A (April 2002). "An integrated, functionally annotated gene map of the DXS8026-ELK1 interval on human Xp11.3-Xp11.23: potential hotspot for neurogenetic disorders". Genomics. 79 (4): 560–72. doi:10.1006/geno.2002.6733. PMID 11944989.
  7. ^ "GeneCards: CXorf36 Gene". Retrieved 2011-04-28.
  8. ^ "NCBI AceView: CXorf36". Retrieved 2011-04-28.
  9. ^ Tarpey PS, Smith R, Pleasance E, Whibley A, Edkins S, Hardy C, O'Meara S, Latimer C, Dicks E, Menzies A, Stephens P, Blow M, Greenman C, Xue Y, Tyler-Smith C, Thompson D, Gray K, Andrews J, Barthorpe S, Buck G, Cole J, Dunmore R, Jones D, Maddison M, Mironenko T, Turner R, Turrell K, Varian J, West S, Widaa S, Wray P, Teague J, Butler A, Jenkinson A, Jia M, Richardson D, Shepherd R, Wooster R, Tejada MI, Martinez F, Carvill G, Goliath R, de Brouwer AP, van Bokhoven H, Van Esch H, Chelly J, Raynaud M, Ropers HH, Abidi FE, Srivastava AK, Cox J, Luo Y, Mallya U, Moon J, Parnau J, Mohammed S, Tolmie JL, Shoubridge C, Corbett M, Gardner A, Haan E, Rujirabanjerd S, Shaw M, Vandeleur L, Fullston T, Easton DF, Boyle J, Partington M, Hackett A, Field M, Skinner C, Stevenson RE, Bobrow M, Turner G, Schwartz CE, Gecz J, Raymond FL, Futreal PA, Stratton MR (May 2009). "A systematic, large-scale resequencing screen of X-chromosome coding exons in mental retardation". Nat. Genet. 41 (5): 535–43. doi:10.1038/ng.367. PMC 2872007. PMID 19377476.
  10. ^ "NCBI Protein: hypothetical protein LOC79742 isoform 1". Retrieved May 10, 2011.
  11. ^ "SDSC Biology Workbench". Retrieved May 10, 2011.[permanent dead link]
  12. ^ "MyHits Dotlet". Retrieved May 10, 2011.
  13. ^ "DTU Center for Biological Sciences, NetPhos". Retrieved May 10, 2011.
  14. ^ "DTU Center for Biological Sciences, NetNGlyc". Retrieved May 10, 2011.
  15. ^ "NCBI GEO Profiles: CXorf36". Retrieved May 10, 2011.
  16. ^ "KEGG: C3orf58". Retrieved May 10, 2011.
  17. ^ "NCBI BLAST". Retrieved May 9, 2011.
[edit]

Further reading

[edit]