Jump to content

Morava K-theory

From Wikipedia, the free encyclopedia
(Redirected from Algebraic Morava K-theories)

In stable homotopy theory, a branch of mathematics, Morava K-theory is one of a collection of cohomology theories introduced in algebraic topology by Jack Morava in unpublished preprints in the early 1970s. For every prime number p (which is suppressed in the notation), it consists of theories K(n) for each nonnegative integer n, each a ring spectrum in the sense of homotopy theory. Johnson & Wilson (1975) published the first account of the theories.

Details

[edit]

The theory K(0) agrees with singular homology with rational coefficients, whereas K(1) is a summand of mod-p complex K-theory. The theory K(n) has coefficient ring

Fp[vn,vn−1]

where vn has degree 2(pn − 1). In particular, Morava K-theory is periodic with this period, in much the same way that complex K-theory has period 2.

These theories have several remarkable properties.

  • They have Künneth isomorphisms for arbitrary pairs of spaces: that is, for X and Y CW complexes, we have

See also

[edit]

References

[edit]
  • Johnson, David Copeland; Wilson, W. Stephen (1975), "BP operations and Morava's extraordinary K-theories.", Math. Z., 144 (1): 55&minus, 75, doi:10.1007/BF01214408, MR 0377856
  • Hovey-Strickland, "Morava K-theory and localisation"
  • Ravenel, Douglas C. (1992), Nilpotence and periodicity in stable homotopy theory, Annals of Mathematics Studies, vol. 128, Princeton University Press, MR 1192553
  • Würgler, Urs (1991), "Morava K-theories: a survey", Algebraic topology Poznan 1989, Lecture Notes in Math., vol. 1474, Berlin: Springer, pp. 111–138, doi:10.1007/BFb0084741, ISBN 978-3-540-54098-4, MR 1133896111-138&rft.pub=Springer&rft.date=1991&rft_id=https://mathscinet.ams.org/mathscinet-getitem?mr=1133896#id-name=MR&rft_id=info:doi/10.1007/BFb0084741&rft.isbn=978-3-540-54098-4&rft.aulast=Würgler&rft.aufirst=Urs&rfr_id=info:sid/en.wikipedia.org:Morava K-theory" class="Z3988">