600 (number)
Appearance
(Redirected from 689 (number))
| ||||
---|---|---|---|---|
Cardinal | six hundred | |||
Ordinal | 600th (six hundredth) | |||
Factorization | 23 × 3 × 52 | |||
Divisors | 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 25, 30, 40, 50, 60, 75, 100, 120, 150, 200, 300, 600 | |||
Greek numeral | Χ´ | |||
Roman numeral | DC | |||
Binary | 10010110002 | |||
Ternary | 2110203 | |||
Senary | 24406 | |||
Octal | 11308 | |||
Duodecimal | 42012 | |||
Hexadecimal | 25816 | |||
Armenian | Ո | |||
Hebrew | ת"ר / ם | |||
Babylonian cuneiform | 𒌋 | |||
Egyptian hieroglyph | 𓍧 |
600 (six hundred) is the natural number following 599 and preceding 601.
Mathematical properties
[edit]Six hundred is a composite number, an abundant number, a pronic number,[1] a Harshad number and a largely composite number.[2]
Credit and cars
[edit]- In the United States, a credit score of 600 or below is considered poor, limiting available credit at a normal interest rate
- NASCAR runs 600 advertised miles in the Coca-Cola 600, its longest race
- The Fiat 600 is a car, the SEAT 600 its Spanish version
Integers from 601 to 699
[edit]600s
[edit]- 601 = prime number, centered pentagonal number[3]
- 602 = 2 × 7 × 43, nontotient, number of cubes of edge length 1 required to make a hollow cube of edge length 11, area code for Phoenix, AZ along with 480 and 623
- 603 = 32 × 67, Harshad number, Riordan number, area code for New Hampshire
- 604 = 22 × 151, nontotient, totient sum for first 44 integers, area code for southwestern British Columbia (Lower Mainland, Fraser Valley, Sunshine Coast and Sea to Sky)
- 605 = 5 × 112, Harshad number, sum of the nontriangular numbers between the two successive triangular numbers 55 and 66, number of non-isomorphic set-systems of weight 9
- 606 = 2 × 3 × 101, sphenic number, sum of six consecutive primes (89 97 101 103 107 109), admirable number, One of the numbers associated with Christ - ΧϚʹ - see the Greek numerals Isopsephy and the reason why other numbers siblings with this one are Beast's numbers.
- 607 – prime number, sum of three consecutive primes (197 199 211), Mertens function(607) = 0, balanced prime,[4] strictly non-palindromic number,[5] Mersenne prime exponent
- 608 = 25 × 19, Mertens function(608) = 0, nontotient, happy number, number of regions formed by drawing the line segments connecting any two of the perimeter points of a 3 times 4 grid of squares[6]
- 609 = 3 × 7 × 29, sphenic number, strobogrammatic number[7]
610s
[edit]- 610 = 2 × 5 × 61, sphenic number, Fibonacci number,[8] Markov number,[9] also a kind of telephone wall socket used in Australia
- 611 = 13 × 47, sum of the three standard board sizes in Go (92 132 192), the 611th tribonacci number is prime
- 612 = 22 × 32 × 17, Harshad number, Zuckerman number (sequence A007602 in the OEIS), untouchable number, area code for Minneapolis, MN
- 613 = prime number, first number of prime triple (p, p 4, p 6), middle number of sexy prime triple (p − 6, p, p 6). Geometrical numbers: Centered square number with 18 per side, circular number of 21 with a square grid and 27 using a triangular grid. Also 17-gonal. Hypotenuse of a right triangle with integral sides, these being 35 and 612. Partitioning: 613 partitions of 47 into non-factor primes, 613 non-squashing partitions into distinct parts of the number 54. Squares: Sum of squares of two consecutive integers, 17 and 18. Additional properties: a lucky number, index of prime Lucas number.[10]
- In Judaism the number 613 is very significant, as its metaphysics, the Kabbalah, views every complete entity as divisible into 613 parts: 613 parts of every Sefirah; 613 mitzvot, or divine Commandments in the Torah; 613 parts of the human body.
- The number 613 hangs from the rafters at Madison Square Garden in honor of New York Knicks coach Red Holzman's 613 victories
- 614 = 2 × 307, nontotient, 2-Knödel number. According to Rabbi Emil Fackenheim, the number of Commandments in Judaism should be 614 rather than the traditional 613.
- 615 = 3 × 5 × 41, sphenic number
- 616 = 23 × 7 × 11, Padovan number, balanced number,[11] an alternative value for the Number of the Beast (more commonly accepted to be 666)
- 617 = prime number, sum of five consecutive primes (109 113 127 131 137), Chen prime, Eisenstein prime with no imaginary part, number of compositions of 17 into distinct parts,[12] prime index prime, index of prime Lucas number[10]
- Area code 617, a telephone area code covering the metropolitan Boston area
- 618 = 2 × 3 × 103, sphenic number, admirable number
- 619 = prime number, strobogrammatic prime,[13] alternating factorial[14]
620s
[edit]- 620 = 22 × 5 × 31, sum of four consecutive primes (149 151 157 163), sum of eight consecutive primes (61 67 71 73 79 83 89 97), the sum of the first 620 primes is itself prime[15]
- 621 = 33 × 23, Harshad number, the discriminant of a totally real cubic field[16]
- 622 = 2 × 311, nontotient, Fine number, Fine's sequence (or Fine numbers): number of relations of valence >= 1 on an n-set; also number of ordered rooted trees with n edges having root of even degree, it is also the standard diameter of modern road bicycle wheels (622 mm, from hook bead to hook bead)
- 623 = 7 × 89, number of partitions of 23 into an even number of parts[17]
- 624 = 24 × 3 × 13 = J4(5),[18] sum of a twin prime pair (311 313), Harshad number, Zuckerman number
- 625 = 252 = 54, sum of seven consecutive primes (73 79 83 89 97 101 103), centered octagonal number,[19] 1-automorphic number, Friedman number since 625 = 56−2,[20] one of the two three-digit numbers when squared or raised to a higher power that end in the same three digits, the other being 376
- 626 = 2 × 313, nontotient, 2-Knödel number, Stitch's experiment number
- 627 = 3 × 11 × 19, sphenic number, number of integer partitions of 20,[21] Smith number[22]
- 628 = 22 × 157, nontotient, totient sum for first 45 integers
- 629 = 17 × 37, highly cototient number,[23] Harshad number, number of diagonals in a 37-gon[24]
630s
[edit]- 630 = 2 × 32 × 5 × 7, sum of six consecutive primes (97 101 103 107 109 113), triangular number, hexagonal number,[25] sparsely totient number,[26] Harshad number, balanced number,[27] largely composite number[2]
- 631 = Cuban prime number, Lucky prime, centered triangular number,[28] centered hexagonal number,[29] Chen prime, lazy caterer number (sequence A000124 in the OEIS)
- 632 = 23 × 79, refactorable number, number of 13-bead necklaces with 2 colors[30]
- 633 = 3 × 211, sum of three consecutive primes (199 211 223), Blum integer; also, in the title of the movie 633 Squadron
- 634 = 2 × 317, nontotient, Smith number[22]
- 635 = 5 × 127, sum of nine consecutive primes (53 59 61 67 71 73 79 83 89), Mertens function(635) = 0, number of compositions of 13 into pairwise relatively prime parts[31]
- 636 = 22 × 3 × 53, sum of ten consecutive primes (43 47 53 59 61 67 71 73 79 83), Smith number,[22] Mertens function(636) = 0
- 637 = 72 × 13, Mertens function(637) = 0, decagonal number[32]
- 638 = 2 × 11 × 29, sphenic number, sum of four consecutive primes (151 157 163 167), nontotient, centered heptagonal number[33]
- 639 = 32 × 71, sum of the first twenty primes, also ISO 639 is the ISO's standard for codes for the representation of languages
640s
[edit]- 640 = 27 × 5, Harshad number, refactorable number, hexadecagonal number,[34] number of 1's in all partitions of 24 into odd parts,[35] number of acres in a square mile
- 641 = prime number, Sophie Germain prime,[36] factor of 4294967297 (the smallest nonprime Fermat number), Chen prime, Eisenstein prime with no imaginary part, Proth prime[37]
- 642 = 2 × 3 × 107 = 14 24 54,[38] sphenic number, admirable number
- 643 = prime number, largest prime factor of 123456
- 644 = 22 × 7 × 23, nontotient, Perrin number,[39] Harshad number, common umask, admirable number
- 645 = 3 × 5 × 43, sphenic number, octagonal number, Smith number,[22] Fermat pseudoprime to base 2,[40] Harshad number
- 646 = 2 × 17 × 19, sphenic number, also ISO 646 is the ISO's standard for international 7-bit variants of ASCII, number of permutations of length 7 without rising or falling successions[41]
- 647 = prime number, sum of five consecutive primes (113 127 131 137 139), Chen prime, Eisenstein prime with no imaginary part, 3647 - 2647 is prime[42]
- 648 = 23 × 34 = A331452(7, 1),[6] Harshad number, Achilles number, area of a square with diagonal 36[43]
- 649 = 11 × 59, Blum integer
650s
[edit]- 650 = 2 × 52 × 13, primitive abundant number,[44] square pyramidal number,[45] pronic number,[1] nontotient, totient sum for first 46 integers; (other fields) the number of seats in the House of Commons of the United Kingdom, admirable number
- 651 = 3 × 7 × 31, sphenic number, pentagonal number,[46] nonagonal number[47]
- 652 = 22 × 163, maximal number of regions by drawing 26 circles[48]
- 653 = prime number, Sophie Germain prime,[36] balanced prime,[4] Chen prime, Eisenstein prime with no imaginary part
- 654 = 2 × 3 × 109, sphenic number, nontotient, Smith number,[22] admirable number
- 655 = 5 × 131, number of toothpicks after 20 stages in a three-dimensional grid[49]
- 656 = 24 × 41 = ,[50] in Judaism, 656 is the number of times that Jerusalem is mentioned in the Hebrew Bible or Old Testament
- 657 = 32 × 73, the largest known number not of the form a2 s with s a semiprime
- 658 = 2 × 7 × 47, sphenic number, untouchable number
- 659 = prime number, Sophie Germain prime,[36] sum of seven consecutive primes (79 83 89 97 101 103 107), Chen prime, Mertens function sets new low of −10 which stands until 661, highly cototient number,[23] Eisenstein prime with no imaginary part, strictly non-palindromic number[5]
660s
[edit]- 660 = 22 × 3 × 5 × 11
- Sum of four consecutive primes (157 163 167 173)
- Sum of six consecutive primes (101 103 107 109 113 127)
- Sum of eight consecutive primes (67 71 73 79 83 89 97 101)
- Sparsely totient number[26]
- Sum of 11th row when writing the natural numbers as a triangle.[51]
- Harshad number.
- largely composite number[2]
- 661 = prime number
- Sum of three consecutive primes (211 223 227)
- Mertens function sets new low of −11 which stands until 665
- Pentagram number of the form
- Hexagram number of the form i.e. a star number
- 662 = 2 × 331, nontotient, member of Mian–Chowla sequence[52]
- 663 = 3 × 13 × 17, sphenic number, Smith number[22]
- 664 = 23 × 83, refactorable number, number of knapsack partitions of 33[53]
- Telephone area code for Montserrat
- Area code for Tijuana within Mexico
- Model number for the Amstrad CPC 664 home computer
- 665 = 5 × 7 × 19, sphenic number, Mertens function sets new low of −12 which stands until 1105, number of diagonals in a 38-gon[24]
- 666 = 2 × 32 × 37, 36th triangular number, Harshad number, repdigit
- 667 = 23 × 29, lazy caterer number (sequence A000124 in the OEIS)
- 668 = 22 × 167, nontotient
- 669 = 3 × 223, Blum integer
670s
[edit]- 670 = 2 × 5 × 67, sphenic number, octahedral number,[54] nontotient
- 671 = 11 × 61. This number is the magic constant of n×n normal magic square and n-queens problem for n = 11.
- 672 = 25 × 3 × 7, harmonic divisor number,[55] Zuckerman number, admirable number, largely composite number,[2] triperfect number
- 673 = prime number, lucky prime, Proth prime[37]
- 674 = 2 × 337, nontotient, 2-Knödel number
- 675 = 33 × 52, Achilles number
- 676 = 22 × 132 = 262, palindromic square
- 677 = prime number, Chen prime, Eisenstein prime with no imaginary part, number of non-isomorphic self-dual multiset partitions of weight 10[56]
- 678 = 2 × 3 × 113, sphenic number, nontotient, number of surface points of an octahedron with side length 13,[57] admirable number
- 679 = 7 × 97, sum of three consecutive primes (223 227 229), sum of nine consecutive primes (59 61 67 71 73 79 83 89 97), smallest number of multiplicative persistence 5[58]
680s
[edit]- 680 = 23 × 5 × 17, tetrahedral number,[59] nontotient
- 681 = 3 × 227, centered pentagonal number[3]
- 682 = 2 × 11 × 31, sphenic number, sum of four consecutive primes (163 167 173 179), sum of ten consecutive primes (47 53 59 61 67 71 73 79 83 89), number of moves to solve the Norwegian puzzle strikketoy[60]
- 683 = prime number, Sophie Germain prime,[36] sum of five consecutive primes (127 131 137 139 149), Chen prime, Eisenstein prime with no imaginary part, Wagstaff prime[61]
- 684 = 22 × 32 × 19, Harshad number, number of graphical forest partitions of 32[62]
- 685 = 5 × 137, centered square number[63]
- 686 = 2 × 73, nontotient, number of multigraphs on infinite set of nodes with 7 edges[64]
- 687 = 3 × 229, 687 days to orbit the Sun (Mars) D-number[65]
- 688 = 24 × 43, Friedman number since 688 = 8 × 86,[20] 2-automorphic number[66]
- 689 = 13 × 53, sum of three consecutive primes (227 229 233), sum of seven consecutive primes (83 89 97 101 103 107 109). Strobogrammatic number[67]
690s
[edit]- 690 = 2 × 3 × 5 × 23, sum of six consecutive primes (103 107 109 113 127 131), sparsely totient number,[26] Smith number,[22] Harshad number
- ISO 690 is the ISO's standard for bibliographic references
- 691 = prime number, (negative) numerator of the Bernoulli number B12 = -691/2730. Ramanujan's tau function τ and the divisor function σ11 are related by the remarkable congruence τ(n) ≡ σ11(n) (mod 691).
- In number theory, 691 is a "marker" (similar to the radioactive markers in biology): whenever it appears in a computation, one can be sure that Bernoulli numbers are involved.
- 692 = 22 × 173, number of partitions of 48 into powers of 2[68]
- 693 = 32 × 7 × 11, triangular matchstick number,[69] the number of sections in Ludwig Wittgenstein's Philosophical Investigations.
- 694 = 2 × 347, centered triangular number,[28] nontotient, smallest pandigital number in base 5.[70]
- 695 = 5 × 139, 695!! 2 is prime.[71]
- 696 = 23 × 3 × 29, sum of a twin prime (347 349) sum of eight consecutive primes (71 73 79 83 89 97 101 103), totient sum for first 47 integers, trails of length 9 on honeycomb lattice[72]
- 697 = 17 × 41, cake number; the number of sides of Colorado[73]
- 698 = 2 × 349, nontotient, sum of squares of two primes[74]
- 699 = 3 × 233, D-number[65]
References
[edit]- ^ a b Sloane, N. J. A. (ed.). "Sequence A002378 (Oblong (or promic, pronic, or heteromecic) numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b c d Sloane, N. J. A. (ed.). "Sequence A067128 (Ramanujan's largely composite numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b Sloane, N. J. A. (ed.). "Sequence A005891 (Centered pentagonal numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b Sloane, N. J. A. (ed.). "Sequence A006562 (Balanced primes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b Sloane, N. J. A. (ed.). "Sequence A016038 (Strictly non-palindromic numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b Sloane, N. J. A. (ed.). "Sequence A331452 (Triangle read by rows: T(n,m) (n >= m >= 1) = number of regions (or cells) formed by drawing the line segments connecting any two of the 2*(m n) perimeter points of an m X n grid of squares)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A000787 (Strobogrammatic numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A000045 (Fibonacci numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A002559 (Markoff (or Markov) numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b Sloane, N. J. A. (ed.). "Sequence A001606 (Indices of prime Lucas numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A020492 (Balanced numbers: numbers k such that phi(k) (A000010) divides sigma(k) (A000203))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A032020 (Number of compositions (ordered partitions) of n into distinct parts)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-05-24.
- ^ Sloane, N. J. A. (ed.). "Sequence A007597 (Strobogrammatic primes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A005165 (Alternating factorials)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ OEIS: A013916
- ^ Sloane, N. J. A. (ed.). "Sequence A006832 (Discriminants of totally real cubic fields)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A027187 (Number of partitions of n into an even number of parts)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A059377 (Jordan function J_4(n))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A016754 (Odd squares: a(n) = (2n 1)^2. Also centered octagonal numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b Sloane, N. J. A. (ed.). "Sequence A036057 (Friedman numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A000041 (a(n) = number of partitions of n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b c d e f g Sloane, N. J. A. (ed.). "Sequence A006753 (Smith numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b Sloane, N. J. A. (ed.). "Sequence A100827 (Highly cototient numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b Sloane, N. J. A. (ed.). "Sequence A000096 (a(n) = n*(n 3)/2)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A000384 (Hexagonal numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b c Sloane, N. J. A. (ed.). "Sequence A036913 (Sparsely totient numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A020492 (Balanced numbers: numbers k such that phi(k) (A000010) divides sigma(k) (A000203))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b Sloane, N. J. A. (ed.). "Sequence A005448 (Centered triangular numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A003215 (Hex (or centered hexagonal) numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A000031 (Number of n-bead necklaces with 2 colors when turning over is not allowed; also number of output sequences from a simple n-stage cycling shift register; also number of binary irreducible polynomials whose degree divides n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A101268 (Number of compositions of n into pairwise relatively prime parts)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-05-31.
- ^ Sloane, N. J. A. (ed.). "Sequence A001107 (10-gonal (or decagonal) numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A069099 (Centered heptagonal numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A051868 (16-gonal (or hexadecagonal) numbers: a(n) = n*(7*n-6))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A036469 (Partial sums of A000009 (partitions into distinct parts))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b c d Sloane, N. J. A. (ed.). "Sequence A005384 (Sophie Germain primes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b Sloane, N. J. A. (ed.). "Sequence A080076 (Proth primes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A074501 (a(n) = 1^n 2^n 5^n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-05-31.
- ^ "Sloane's A001608 : Perrin sequence". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-11.
- ^ Sloane, N. J. A. (ed.). "Sequence A001567 (Fermat pseudoprimes to base 2)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A002464 (Hertzsprung's problem: ways to arrange n non-attacking kings on an n X n board, with 1 in each row and column. Also number of permutations of length n without rising or falling successions)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A057468 (Numbers k such that 3^k - 2^k is prime)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A001105 (a(n) = 2*n^2)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A071395 (Primitive abundant numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A000330 (Square pyramidal numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A000326 (Pentagonal numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A001106 (9-gonal (or enneagonal or nonagonal) numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A014206 (a(n) = n^2 n 2)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A160160 (Toothpick sequence in the three-dimensional grid)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A002379 (a(n) = floor(3^n / 2^n))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A027480 (a(n) = n*(n 1)*(n 2)/2)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A005282 (Mian-Chowla sequence)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A108917 (Number of knapsack partitions of n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A005900 (Octahedral numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A001599 (Harmonic or Ore numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A316983 (Number of non-isomorphic self-dual multiset partitions of weight n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A005899 (Number of points on surface of octahedron with side n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-05-31.
- ^ Sloane, N. J. A. (ed.). "Sequence A003001 (Smallest number of multiplicative persistence n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-05-31.
- ^ Sloane, N. J. A. (ed.). "Sequence A000292 (Tetrahedral numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-11.
- ^ Sloane, N. J. A. (ed.). "Sequence A000975 (Lichtenberg sequence)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-05-31.
- ^ Sloane, N. J. A. (ed.). "Sequence A000979 (Wagstaff primes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-11.
- ^ Sloane, N. J. A. (ed.). "Sequence A000070 (a(n) = Sum_{k=0..n} p(k) where p(k) = number of partitions of k (A000041))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-05-31.
- ^ Sloane, N. J. A. (ed.). "Sequence A001844 (Centered square numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-11.
- ^ Sloane, N. J. A. (ed.). "Sequence A050535 (Number of multigraphs on infinite set of nodes with n edges)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-05-31.
- ^ a b Sloane, N. J. A. (ed.). "Sequence A033553 (3-Knödel numbers or D-numbers: numbers n > 3 such that n divides k^(n-2)-k for all k with gcd(k, n) = 1)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-05-31.
- ^ Sloane, N. J. A. (ed.). "Sequence A030984 (2-automorphic numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2021-09-01.
- ^ Sloane, N. J. A. (ed.). "Sequence A000787 (Strobogrammatic numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A000123 (Number of binary partitions: number of partitions of 2n into powers of 2)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-05-31.
- ^ Sloane, N. J. A. (ed.). "Sequence A048633 (Triangular matchstick numbers: a(n) = 3*n*(n 1)/2)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-05-31.
- ^ Sloane, N. J. A. (ed.). "Sequence A049363 (a(1) = 1; for n > 1, smallest digitally balanced number in base n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A076185 (Numbers n such that n!! 2 is prime)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-05-31.
- ^ Sloane, N. J. A. (ed.). "Sequence A006851 (Trails of length n on honeycomb lattice)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-05-18.
- ^ "Colorado is a rectangle? Think again". 23 January 2023.
- ^ Sloane, N. J. A. (ed.). "Sequence A045636 (Numbers of the form p^2 q^2, with p and q primes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.