2,6-Pyridinedicarbothioic acid
Names | |
---|---|
IUPAC name
2,6-Pyridinedicarbothioic acid
| |
Preferred IUPAC name
Pyridine-2,6-bis(carbothioic S-acid) | |
Other names
PDTC, dithiopyridinedicarbothioic acid
| |
Identifiers | |
3D model (JSmol)
|
|
ChemSpider | |
PubChem CID
|
|
UNII | |
CompTox Dashboard (EPA)
|
|
| |
| |
Properties | |
C7H5O2S2 | |
Molar mass | 185.24 g·mol−1 |
Appearance | White crystalline solid |
Density | 1.415 g/cm3 |
Melting point | 97 to 99 °C (207 to 210 °F; 370 to 372 K) |
Boiling point | 404.4 °C (759.9 °F; 677.5 K) |
1000 g/L (5.02 mol/L) | |
Hazards | |
Occupational safety and health (OHS/OSH): | |
Main hazards
|
acidic |
Flash point | 198.4 °C (389.1 °F; 471.5 K) |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
|
2,6-Pyridinedicarbothioic acid (PDTC) is an organosulfur compound that is produced by some bacteria. It functions as a , a low molecular weight compound that scavenges iron. Siderophores solubilize compounds by forming strong complexes. PDTC is secreted by the soil bacteria Pseudomonas stutzeri and Pseudomonas putida.[1]
Synthesis and biosynthesis
[edit]PDTC can be synthesized in the laboratory by treating the diacid dichloride of pyridine-2,6-dicarboxylic with H2S in pyridine:
- NC5H3(COCl)2 2 H2S 2 C5H5N → [C5H5NH ][HNC5H3(COS)−2] [C5H5NH]Cl
This route produces the pyridinium salt of pyridinium-2,6-dicarbothioate. Treatment of this orange-colored salt with sulfuric acid gives colorless PDTC, which can then be extracted with dichloromethane.[2]
The biosynthesis of PDTC remains unclear although some insights can be deduced from the genetics.[3] It is suggested that Pseudomonas stutzeri may have acquired at least one of the genes by lateral transfer from mycobacteria.[4] In a proposed biosynthetic sequence pyridine-2,6-dicarboxylic acid, a known bacterial metabolite,[4] is activated as its bis-adenosine monophosphate (AMP) derivative. The sulfur donor and its activation remain uncertain.[5]
Coordination chemistry
[edit]PDTC binds to both Fe2 and Fe3 . The ferric complex is brown, whereas the ferrous complex is blue. In the presence of air, the ferrous complex oxidizes to the ferric compound.[7] It is iron selective[4] as only the Fe complex is soluble in water. PDTC is produced mainly during the exponential phase of bacterial growth. The conditions at which Pseudomonas produces PDTC is 25 °C, pH=8 and sufficient aeration.[5]
See also
[edit]References
[edit]- ^ Budzikiewicz, Herbert (2010). "Microbial Siderophores". In Kinghorn, A. Douglas; Falk, Heinz; Kobayashi, Junichi (eds.). Fortschritte der Chemie organischer Naturstoffe / Progress in the Chemistry of Organic Natural Products, Vol. 92 [Progress in the Chemistry of Organic Natural Products]. Vol. 92. pp. 1–75. doi:10.1007/978-3-211-99661-4_1. ISBN 978-3-211-99660-7. PMID 20198464.1-75&rft.date=2010&rft_id=info:pmid/20198464&rft_id=info:doi/10.1007/978-3-211-99661-4_1&rft.isbn=978-3-211-99660-7&rft.aulast=Budzikiewicz&rft.aufirst=Herbert&rfr_id=info:sid/en.wikipedia.org:2,6-Pyridinedicarbothioic acid" class="Z3988">
- ^ Hildebrand, U.; Ockels, W.; Lex, J.; Budzikiewicz, H. (1983). "Zur Struktur Eines 1:1-Adduktes von Pyridin-2,6-Dicarbothiosäure und Pyridin". Phosphorus and Sulfur and the Related Elements. 16 (3): 361–364. doi:10.1080/03086648308080490.361-364&rft.date=1983&rft_id=info:doi/10.1080/03086648308080490&rft.aulast=Hildebrand&rft.aufirst=U.&rft.au=Ockels, W.&rft.au=Lex, J.&rft.au=Budzikiewicz, H.&rfr_id=info:sid/en.wikipedia.org:2,6-Pyridinedicarbothioic acid" class="Z3988">
- ^ Cortese, Marc S; Caplan, Allan B; Crawford, Ronald L (2002). "Structural, functional, and evolutionary analysis of moeZ, a gene encoding an enzyme required for the synthesis of the Pseudomonas metabolite, pyridine-2,6-bis(thiocarboxylic acid)". BMC Evolutionary Biology. 2: 8. doi:10.1186/1471-2148-2-8. PMC 115864. PMID 11972321.
- ^ a b c Cortese, Marc S.; Paszczynski, Andrzej; Lewis, Thomas A.; Sebat, Jonathan L.; Borek, Vladimir; Crawford, Ronald L. (2002). "Metal chelating properties of pyridine-2,6-bis(thiocarboxylic acid) produced by Pseudomonas spp. And the biological activities of the formed complexes". BioMetals. 15 (2): 103–120. doi:10.1023/A:1015241925322. PMID 12046919. S2CID 5545637.103-120&rft.date=2002&rft_id=https://api.semanticscholar.org/CorpusID:5545637#id-name=S2CID&rft_id=info:pmid/12046919&rft_id=info:doi/10.1023/A:1015241925322&rft.aulast=Cortese&rft.aufirst=Marc S.&rft.au=Paszczynski, Andrzej&rft.au=Lewis, Thomas A.&rft.au=Sebat, Jonathan L.&rft.au=Borek, Vladimir&rft.au=Crawford, Ronald L.&rfr_id=info:sid/en.wikipedia.org:2,6-Pyridinedicarbothioic acid" class="Z3988">
- ^ a b Budzikiewicz, H. (2003). "Heteroaromatic monothiocarboxylic acids from Pseudomonas spp". Biodegradation. 14 (2): 65–72. doi:10.1023/A:1024012015127. PMID 12877462. S2CID 29898226.65-72&rft.date=2003&rft_id=https://api.semanticscholar.org/CorpusID:29898226#id-name=S2CID&rft_id=info:pmid/12877462&rft_id=info:doi/10.1023/A:1024012015127&rft.aulast=Budzikiewicz&rft.aufirst=H.&rfr_id=info:sid/en.wikipedia.org:2,6-Pyridinedicarbothioic acid" class="Z3988">
- ^ Hildebrand, U.; Lex, J.; Taraz, K.; Winkler, S.; Ockels, W.; Budzikiewicz, H. (1984). "Untersuchungen zum Redox-System Bis-(pyridin-2,6-dicarbothioato)-Ferrat(II) /-Ferrat(III) [1]". Zeitschrift für Naturforschung B. 39 (11): 1607–1613. doi:10.1515/znb-1984-1123. S2CID 94908888.1607-1613&rft.date=1984&rft_id=info:doi/10.1515/znb-1984-1123&rft_id=https://api.semanticscholar.org/CorpusID:94908888#id-name=S2CID&rft.aulast=Hildebrand&rft.aufirst=U.&rft.au=Lex, J.&rft.au=Taraz, K.&rft.au=Winkler, S.&rft.au=Ockels, W.&rft.au=Budzikiewicz, H.&rfr_id=info:sid/en.wikipedia.org:2,6-Pyridinedicarbothioic acid" class="Z3988">
- ^ Ockels, W., Roemer, A., Budzikiewicz, H., Korth, H., Pulverer, G., "Bacterial constituents. II. An iron(II) complex of pyridine-2,6-di-(monothiocarboxylic acid) - a novel bacterial metabolic product", Tetrahedron Lett. 1978, 3341. doi:10.1016/S0040-4039(01)85634-3