Jump to content

C Programming/Classes/Member Functions

From Wikibooks, open books for an open world

Member Functions

[edit | edit source]

Member functions can (and should) be used to interact with data contained within user defined types. User defined types provide flexibility in the "divide and conquer" scheme in program writing. In other words, one programmer can write a user defined type and guarantee an interface. Another programmer can write the main program with that expected interface. The two pieces are put together and compiled for usage. User defined types provide encapsulation defined in the Object Oriented Programming (OOP) paradigm.

Within classes, to protect the data members, the programmer can define functions to perform the operations on those data members. Member functions and functions are names used interchangeably in reference to classes. Function prototypes are declared within the class definition. These prototypes can take the form of non-class functions as well as class suitable prototypes. Functions can be declared and defined within the class definition. However, most functions can have very large definitions and make the class very unreadable. Therefore it is possible to define the function outside of the class definition using the scope resolution operator "::". This scope resolution operator allows a programmer to define the functions somewhere else. This can allow the programmer to provide a header file .h defining the class and a .obj file built from the compiled .cpp file which contains the function definitions. This can hide the implementation and prevent tampering. The user would have to define every function again to change the implementation. Functions within classes can access and modify (unless the function is constant) data members without declaring them, because the data members are already declared in the class.

Simple example:

file: Foo.h

// the header file named the same as the class helps locate classes within a project
// one class per header file makes it easier to keep the 
// header file readable (some classes can become large)
// each programmer should determine what style works for them or what programming standards their
// teacher/professor/employer has
 
#ifndef FOO_H
#define FOO_H
 
class Foo{
public:
  Foo();                  // function called the default constructor
  Foo( int a, int b );    // function called the overloaded constructor
  int Manipulate( int g, int h );
 
private:
  int x;
  int y;
};
 
#endif

file: Foo.cpp

#include "Foo.h"
 
/* these constructors should really show use of initialization lists
Foo::Foo() : x(5), y(10)
{
}
Foo::Foo(int a, int b) : x(a), y(b)
{
}
*/
Foo::Foo(){
  x = 5;
  y = 10;
}
Foo::Foo( int a, int b ){
  x = a;
  y = b;
}

int Foo::Manipulate( int g, int h ){
  x = h   g*x;
  y = g   h*y;
}

Overloading

[edit | edit source]

Member functions can be overloaded. This means that multiple member functions can exist with the same name on the same scope, but must have different signatures. A member function's signature is comprised of the member function's name and the type and order of the member function's parameters.

Due to name hiding, if a member in the derived class shares the same name with members of the base class, they will be hidden to the compiler. To make those members visible, one can use declarations to introduce them from base class scopes.

Constructors and other class member functions, except the Destructor, can be overloaded.

Constructors

[edit | edit source]

A constructor is a special member function that is called whenever a new instance of a class is created. The compiler calls the constructor after the new object has been allocated in memory, and converts that "raw" memory into a proper, typed object. The constructor is declared much like a normal member function but it will share the name of the class and it has no return value.

Constructors are responsible for almost all of the run-time setup necessary for the class operation. Its main purpose becomes in general defining the data members upon object instantiation (when an object is declared), they can also have arguments, if the programmer so chooses. If a constructor has arguments, then they should also be added to the declaration of any other object of that class when using the new operator. Constructors can also be overloaded.

Foo myTest;                 // essentially what happens is:  Foo myTest = Foo();
Foo myTest( 3, 54 );        // accessing the overloaded constructor
Foo myTest = Foo( 20, 45 ); // although a new object is created, there are some extra function calls involved
                            // with more complex classes, an assignment operator should
                            // be defined to ensure a proper copy (includes ''deep copy'')
                            // myTest would be constructed with the default constructor, and then the
                            // assignment operator copies the unnamed Foo( 20, 45 ) object to myTest

using new with a constructor

Foo* myTest = new Foo();           // this defines a pointer to a dynamically allocated object
Foo* myTest = new Foo( 40, 34 );   // constructed with Foo( 40, 34 )
// be sure to use delete to avoid memory leaks

Note:

While there is no risk in using new to create an object, it is often best to avoid using memory allocation functions within objects' constructors. Specifically, using new to create an array of objects, each of which also uses new to allocate memory during its construction, often results in runtime errors. If a class or structure contains members that must be pointed at dynamically created objects, it is best to sequentially initialize these arrays of the parent object, rather than leaving the task to their constructors.
This is especially important when writing code with exceptions (in exception handling), if an exception is thrown before a constructor is completed, the associated destructor will not be called for that object.

A constructor can delegate to another (introduced in C 11). It is also considered desirable to reduce the use of default arguments, if a maintainer has to write and maintain multiple constructors it can result in code duplication, which reduces maintainability because of the potential for introducing inconsistencies and even lead to code bloat.

Default Constructors

A default constructor is one which can be called with no arguments. Most commonly, a default constructor is declared without any parameters, but it is also possible for a constructor with parameters to be a default constructor if all of those parameters are given default values.

In order to create an array of objects of a class type, the class must have an accessible default constructor; C has no syntax to specify constructor arguments for array elements.

Overloaded Constructors

[edit | edit source]

When an object of a class is instantiated, the class writer can provide various constructors each with a different purpose. A large class would have many data members, some of which may or may not be defined when an object is instantiated. Anyway, each project will vary, so a programmer should investigate various possibilities when providing constructors.

These are all constructors for a class myFoo.

 
myFoo(); // default constructor, the user has no control over initial values
         // overloaded constructors

myFoo( int a, int b=0 ); // allows construction with a certain 'a' value, but accepts 'b' as 0
                         // or allows the user to provide both 'a' and 'b' values
 // or
 
myFoo( int a, int b ); // overloaded constructor, the user must specify both values

class myFoo {
private:
  int Useful1;
  int Useful2;

public:
  myFoo(){                     // default constructor
           Useful1 = 5;
           Useful2 = 10;  
          };

  myFoo( int a, int b = 0 ) { // two possible cases when invoked
         Useful1 = a;
         Useful2 = b;
  };

};
 
myFoo Find;           // default constructor, private member values Useful1 = 5, Useful2 = 10
myFoo Find( 8 );      // overloaded constructor case 1, private member values Useful1 = 8, Useful2 = 0
myFoo Find( 8, 256 ); // overloaded constructor case 2, private member values Useful1 = 8, Useful2 = 256

Constructor initialization lists

[edit | edit source]

Constructor initialization lists (or member initialization list) are the only way to initialize data members and base classes with a non-default constructor. Constructors for the members are included between the argument list and the body of the constructor (separated from the argument list by a colon). Using the initialization lists is not only better in terms of efficiency but also the simplest way to guarantee that all initialization of data members are done before entering the body of constructors.

// Using the initialization list for myComplexMember_ 
MyClass::MyClass(int mySimpleMember, MyComplexClass myComplexMember)
: myComplexMember_(myComplexMember) // only 1 call, to the copy constructor
{
 mySimpleMember_=mySimpleMember; // uses 2 calls, one for the constructor of the mySimpleMember class
                                 // and a second for the assignment operator of the MyComplexClass class
}

This is more efficient than assigning value to the complex data member inside the body of the constructor because in that case the variable is initialized with its corresponding constructor.

Note that the arguments provided to the constructors of the members do not need to be arguments to the constructor of the class; they can also be constants. Therefore you can create a default constructor for a class containing a member with no default constructor.

Example:

MyClass::MyClass() : myComplexMember_(0) { }

It is useful to initialize your members in the constructor using this initialization lists. This makes it obvious for the reader that the constructor does not execute logic. The order the initialization is done should be the same as you defined your base-classes and members. Otherwise you can get warnings at compile-time. Once you start initializing your members make sure to keep all in the constructor(s) to avoid confusion and possible 0xbaadfood.

It is safe to use constructor parameters that are named like members.

Example:

class MyClass : public MyBaseClassA, public MyBaseClassB {
  private:
    int c;
    void *pointerMember;
  public:
    MyClass(int,int,int);
};
/*...*/
MyClass::MyClass(int a, int b, int c):
 MyBaseClassA(a)
,MyBaseClassB(b)
,c(c)
,pointerMember(NULL)
,referenceMember()
{
 //logic
}

Note that this technique was also possible for normal functions but it is now obsoleted and is classified as an error in such case.

Note:
It is a common misunderstanding that initialization of data members can be done within the body of constructors. All such kind of so-called "initialization" are actually assignments. The C standard defines that all initialization of data members are done before entering the body of constructors. This is the reason why certain types (const types and references) cannot be assigned to and must be initialized in the constructor initialization list.

One should also keep in mind that class members are initialized in the order they are declared, not the order they appear in the initializer list. One way of avoiding chicken and egg paradoxes is to always add the members to the initializer list in the same order they're declared.

Destructors

[edit | edit source]

Destructors like the Constructors are declared as any normal member functions but will share the same name as the Class, what distinguishes them is that the Destructor's name is preceded with a "~", it can not have arguments and can't be overloaded.

Destructors are called whenever an Object of the Class is destroyed. Destructors are crucial in avoiding resource leaks (by deallocating memory), and in implementing the RAII idiom. Resources which are allocated in a Constructor of a Class are usually released in the Destructor of that Class as to return the system to some known or stable state after the Class ceases to exist.

The Destructor is invoked when Objects are destroyed, after the function they were declared in returns, when the delete operator is used or when the program is over. If an object of a derived type is destructed, first the Destructor of the most derived object is executed. Then member objects and base class subjects are destructed recursively, in the reverse order their corresponding Constructors completed. As with structs the compiler implicitly declares a Destructor as an inline public member of its class if the class doesn’t have a user-declared Destructor.

The dynamic type of the object will change from the most derived type as Destructors run, symmetrically to how it changes as Constructors execute. This affects the functions called by virtual calls during construction and destruction, and leads to the common (and reasonable) advice to avoid calling virtual functions of an object either directly or indirectly from its Constructors or Destructors.

Sharing most of the concepts we have seen before on the introduction to inline functions, when dealing with member function those concepts are extended, with a few additional considerations.

If the member functions definition is included inside the declaration of the class, that function is by default made implicitly inline. Compiler options may override this behavior.

Calls to virtual functions cannot be inlined if the object's type is not known at compile-time, because we don't know which function to inline.

The static keyword can be used in four different ways:


Clipboard

To do:
Alter the above links from subsection to book locations after the structure is fixed.


static member function
[edit | edit source]

Member functions or variables declared static are shared between all instances of an object type. Meaning that only one copy of the member function or variable does exists for any object type.

member functions callable without an object

When used in a class function member, the function does not take an instantiation as an implicit this parameter, instead behaving like a free function. This means that static class functions can be called without creating instances of the class:

class Foo {
public:
  Foo() {
      numFoos;
    cout << "We have now created " << numFoos << " instances of the Foo class\n";
  }
  static int getNumFoos() {
    return numFoos;
  }
private:
  static int numFoos;
};

int Foo::numFoos = 0;  // allocate memory for numFoos, and initialize it

int main() {
  Foo f1;
  Foo f2;
  Foo f3;
  cout << "So far, we've made " << Foo::getNumFoos() << " instances of the Foo class\n";
}
Named constructors
[edit | edit source]

Named constructors are a good example of using static member functions. Named constructors is the name given to functions used to create an object of a class without (directly) using its constructors. This might be used for the following:

  1. To circumvent the restriction that constructors can be overloaded only if their signatures differ.
  2. Making the class non-inheritable by making the constructors private.
  3. Preventing stack allocation by making constructors private

Declare a static member function that uses a private constructor to create the object and return it. (It could also return a pointer or a reference but this complication seems useless, and turns this into the factory pattern rather than a conventional named constructor.)

Here's an example for a class that stores a temperature that can be specified in any of the different temperature scales.

class Temperature
{
    public:
        static Temperature Fahrenheit (double f);
        static Temperature Celsius (double c);
        static Temperature Kelvin (double k);
    private:
        Temperature (double temp);
        double _temp;
};

Temperature::Temperature (double temp):_temp (temp) {}

Temperature Temperature::Fahrenheit (double f)
{
    return Temperature ((f   459.67) / 1.8);
}

Temperature Temperature::Celsius (double c)
{
    return Temperature (c   273.15);
}

Temperature Temperature::Kelvin (double k)
{
    return Temperature (k);
}

const

[edit | edit source]

This type of member function cannot modify the member variables of a class. It's a hint both to the programmer and the compiler that a given member function doesn't change the internal state of a class; however, any variables declared as mutable can still be modified.

Take for example:

 class Foo
 {
  public:
    int value() const
    {
      return m_value;
    }
 
    void setValue( int i )
    {
      m_value = i;
    }
 
  private:
    int m_value;
 };

Here value() clearly does not change m_value and as such can and should be const. However setValue() does modify m_value and as such cannot be const.

Another subtlety often missed is a const member function cannot call a non-const member function (and the compiler will complain if you try). The const member function cannot change member variables and a non-const member functions can change member variables. Since we assume non-const member functions do change member variables, const member functions are assumed to never change member variables and can't call functions that do change member variables.

The following code example explains what const can do depending on where it is placed.

 class Foo
 {
 public:
    /*
     * Modifies m_widget and the user
     * may modify the returned widget.
     */
    Widget *widget();
 
    /*
     * Does not modify m_widget but the
     * user may modify the returned widget.
     */
    Widget *widget() const;
 
    /*
     * Modifies m_widget, but the user
     * may not modify the returned widget.
     */
    const Widget *cWidget();
 
    /*
     * Does not modify m_widget and the user
     * may not modify the returned widget.
     */
    const Widget *cWidget() const;
 
 private:
    Widget *m_widget;
 };

Accessors and Modifiers (Setter/Getter)

[edit | edit source]
What is an accessor?
An accessor is a member function that does not modify the state of an object. The accessor functions should be declared as const.
Getter is another common definition of an accessor due to the naming ( GetSize() ) of that type of member functions.
What is a modifier?
A modifier, also called a modifying function, is a member function that changes the value of at least one data member. In other words, an operation that modifies the state of an object. Modifiers are also known as ‘mutators’.
Setter is another common definition of a modifier due to the naming ( SetSize( int a_Size ) ) of that type of member functions.

Note:
These are commonly used reference labels (not defined on the standard language).

Dynamic polymorphism (Overrides)

[edit | edit source]

So far, we have learned that we can add new data and functions to a class through inheritance. But what about if we want our derived class to inherit a method from the base class, but to have a different implementation for it? That is when we are talking about polymorphism, a fundamental concept in OOP programming.

As seen previously in the Programming Paradigms Section, Polymorphism is subdivided in two concepts static polymorphism and dynamic polymorphism. This section concentrates on dynamic polymorphism, which applies in C when a derived class overrides a function declared in a base class.

We implement this concept redefining the method in the derived class. However, we need to have some considerations when we do this, so now we must introduce the concepts of dynamic binding, static binding and virtual methods.

Suppose that we have two classes, A and B. B derives from A and redefines the implementation of a method c() that resides in class A. Now suppose that we have an object b of class B. How should the instruction b.c() be interpreted?

If b is declared in the stack (not declared as a pointer or a reference) the compiler applies static binding, this means it interprets (at compile time) that we refer to the implementation of c() that resides in B.

However, if we declare b as a pointer or a reference of class A, the compiler could not know which method to call at compile time, because b can be of type A or B. If this is resolved at run time, the method that resides in B will be called. This is called dynamic binding. If this is resolved at compile time, the method that resides in A will be called. This is again, static binding.

Virtual member functions

[edit | edit source]

The virtual member functions is relatively simple, but often misunderstood. The concept is an essential part of designing a class hierarchy in regards to sub-classing classes as it determines the behavior of overridden methods in certain contexts.

Virtual member functions are class member functions, that can be overridden in any class derived from the one where they were declared. The member function body is then replaced with a new set of implementation in the derived class.

Note:
When overriding virtual functions you can alter the private, protected or public state access state of the member function of the derived class.

By placing the keyword virtual before a method declaration we are indicating that when the compiler has to decide between applying static binding or dynamic binding it will apply dynamic binding. Otherwise, static binding will be applied.

Note:
While it is not required to use the virtual keyword in our subclass definitions (since if the base class function is virtual all subclass overrides of it will also be virtual) it is good style to do so when producing code for future reutilization (for use outside of the same project).

Again, this should be clearer with an example:

class Foo
{
public:
  void f()
  {
    std::cout << "Foo::f()" << std::endl;
  }
  virtual void g()
  {
    std::cout << "Foo::g()" << std::endl;
  }
};
 
class Bar : public Foo
{
public:
  void f()
  {
    std::cout << "Bar::f()" << std::endl;
  }
  virtual void g()
  {
    std::cout << "Bar::g()" << std::endl;
  }
};
 
int main()
{
  Foo foo;
  Bar bar;

  Foo *baz = &bar;
  Bar *quux = &bar;

  foo.f(); // "Foo::f()"
  foo.g(); // "Foo::g()"
 
  bar.f(); // "Bar::f()"
  bar.g(); // "Bar::g()"

  // So far everything we would expect...
 
  baz->f();  // "Foo::f()"
  baz->g();  // "Bar::g()"

  quux->f(); // "Bar::f()"
  quux->g(); // "Bar::g()"
 
  return 0;
}

Our first calls to f() and g() on the two objects are straightforward. However things get interesting with our baz pointer which is a pointer to the Foo type.

f() is not virtual and as such a call to f() will always invoke the implementation associated with the pointer type—in this case the implementation from Foo.

Note:
Remember that overloading and overriding are distinct concepts.

Virtual function calls are computationally more expensive than regular function calls. Virtual functions use pointer indirection, invocation and will require a few extra instructions than normal member functions. They also require that the constructor of any class/structure containing virtual functions to initialize a table of pointers to its virtual member functions.

All this characteristics will signify a trade-off between performance and design. One should avoid preemptively declaring functions virtual without an existing structural need. Keep in mind that virtual functions that are only resolved at run-time cannot be inlined.


Clipboard

To do:
Example of issue of virtual and inline.


Note:
Some of the needs for using virtual functions can be addressed by using a class template. This will be covered when we introduce Templates.

Pure virtual member function

[edit | edit source]

There is one additional interesting possibility. Sometimes we don't want to provide an implementation of our function at all, but want to require people sub-classing our class to provide an implementation on their own. This is the case for pure virtuals.

To indicate a pure virtual function instead of an implementation we simply add an "= 0" after the function declaration.

Again—an example:

class Widget
{
public:
   virtual void paint() = 0;
};

class Button : public Widget
{
public:
   void paint() // is virtual because it is an override
   {
       // do some stuff to draw a button
   }
};

Because paint() is a pure virtual function in the Widget class we are required to provide an implementation in all concrete subclasses. If we don't the compiler will give us an error at build time.

This is helpful for providing interfaces—things that we expect from all of the objects based on a certain hierarchy, but when we want to ignore the implementation details.

So why is this useful?

Let's take our example from above where we had a pure virtual for painting. There are a lot of cases where we want to be able to do things with widgets without worrying about what kind of widget it is. Painting is an easy example.

Imagine that we have something in our application that repaints widgets when they become active. It would just work with pointers to widgets—i.e. Widget *activeWidget() const might be a possible function signature. So we might do something like:

Widget *w = window->activeWidget();
w->paint();

We want to actually call the appropriate paint member function for the "real" widget type—not Widget::paint() (which is a "pure" virtual and will cause the program to crash if called using virtual dispatch). By using a virtual function we insure that the member function implementation for our subclass -- Button::paint() in this case—will be called.


Clipboard

To do:
Mention interface classes


Covariant return types

[edit | edit source]

Covariant return types is the ability for a virtual function in a derived class to return a pointer or reference to an instance of itself if the version of the method in the base class does so. e.g.

class base
{
public:
  virtual base* create() const;
};

class derived : public base
{
public:
  virtual derived* create() const;
};

This allows casting to be avoided.

Note:
Some older compilers do not have support for covariant return types. Workarounds exist for such compilers.

virtual Constructors

[edit | edit source]

There is a hierarchy of classes with base class Foo. Given an object bar belonging in the hierarchy, it is desired to be able to do the following:

  1. Create an object baz of the same class as bar (say, class Bar) initialized using the default constructor of the class. The syntax normally used is:
    Bar* baz = bar.create();
  2. Create an object baz of the same class as bar which is a copy of bar. The syntax normally used is:
    Bar* baz = bar.clone();

In the class Foo, the methods Foo::create() and Foo::clone() are declared as follows:

class Foo
{
    // ...

    public:
        // Virtual default constructor
        virtual Foo* create() const;

        // Virtual copy constructor
        virtual Foo* clone() const;
};

If Foo is to be used as an abstract class, the functions may be made pure virtual:

class Foo
{
   // ...

    public:
        virtual Foo* create() const = 0;
        virtual Foo* clone() const = 0;
};

In order to support the creation of a default-initialized object, and the creation of a copy object, each class Bar in the hierarchy must have public default and copy constructors. The virtual constructors of Bar are defined as follows:

class Bar : ... // Bar is a descendant of Foo
{
    // ...

    public:
    // Non-virtual default constructor
    Bar ();
    // Non-virtual copy constructor
    Bar (const Bar&);

    // Virtual default constructor, inline implementation
    Bar* create() const { return new Foo (); }
    // Virtual copy constructor, inline implementation
    Bar* clone() const { return new Foo (*this); }
};

The above code uses covariant return types. If your compiler doesn't support Bar* Bar::create(), use Foo* Bar::create() instead, and similarly for clone().

While using these virtual constructors, you must manually deallocate the object created by calling delete baz;. This hassle could be avoided if a smart pointer (e.g. std::unique_ptr<Foo>) is used in the return type instead of the plain old Foo*.

Remember that whether or not Foo uses dynamically allocated memory, you must define the destructor virtual ~Foo () and make it virtual to take care of deallocation of objects using pointers to an ancestral type.

virtual Destructor

[edit | edit source]

It is of special importance to remember to define a virtual destructor even if empty in any base class, since failing to do so will create problems with the default compiler generated destructor that will not be virtual.

A virtual destructor is not overridden when redefined in a derived class, the definitions to each destructor are cumulative and they start from the last derivate class toward the first base class.

Pure virtual Destructor

[edit | edit source]

Every abstract class should contain the declaration of a pure virtual destructor.

Pure virtual destructors are a special case of pure virtual functions (meant to be overridden in a derived class). They must always be defined and that definition should always be empty.

class Interface {
public:
  virtual ~Interface() = 0; //declaration of a pure virtual destructor 
};

Interface::~Interface(){} //pure virtual destructor definition (should always be empty)

Law of three

[edit | edit source]

The "law of three" is not really a law, but rather a guideline: if a class needs an explicitly declared copy constructor, copy assignment operator, or destructor, then it usually needs all three.

There are exceptions to this rule (or, to look at it another way, refinements). For example, sometimes a destructor is explicitly declared just in order to make it virtual; in that case there's not necessarily a need to declare or implement the copy constructor and copy assignment operator.

Most classes should not declare any of the "big three" operations; classes that manage resources generally need all three.