Ada Programming/Mathematical calculations
Ada is very well suited for all kinds of calculations. You can define your own fixed point and floating point types and — with the aid of generic packages call all the mathematical functions you need. In that respect Ada is on par with Fortran. This module will show you how to use them and while we progress we create a simple RPN calculator.
Simple calculations
[edit | edit source]Additions can be done using the predefined operator . The operator is predefined for all numeric types and the following, working code, demonstrates its use:
-- A.10.1: The Package Text_IO [Annotated]with
Ada.Text_IO;procedure
Numeric_1is
type
Value_Typeis
digits
12range
-999_999_999_999.0e999 .. 999_999_999_999.0e999;package
T_IOrenames
Ada.Text_IO;package
F_IOis
new
Ada.Text_IO.Float_IO (Value_Type); Value_1 : Value_Type; Value_2 : Value_Type;begin
T_IO.Put ("First Value : "); F_IO.Get (Value_1); T_IO.Put ("Second Value : "); F_IO.Get (Value_2); F_IO.Put (Value_1); T_IO.Put (" "); F_IO.Put (Value_2); T_IO.Put (" = "); F_IO.Put (Value_1 Value_2);end
Numeric_1;
Subtractions can be done using the predefined operator -. The following extended demo shows the use of and - operator together:
-- A.10.1: The Package Text_IO [Annotated]with
Ada.Text_IO;procedure
Numeric_2is
type
Value_Typeis
digits
12range
-999_999_999_999.0e999 .. 999_999_999_999.0e999;package
T_IOrenames
Ada.Text_IO;package
F_IOis
new
Ada.Text_IO.Float_IO (Value_Type); Value_1 : Value_Type; Value_2 : Value_Type; Result : Value_Type; Operation : Character;begin
T_IO.Put ("First Value : "); F_IO.Get (Value_1); T_IO.Put ("Second Value : "); F_IO.Get (Value_2); T_IO.Put ("Operation : "); T_IO.Get (Operation);case
Operationis
when
' ' => Result := Value_1 Value_2;when
'-' => Result := Value_1 - Value_2;when
others
=> T_IO.Put_Line ("Illegal Operation.");goto
Exit_Numeric_2;end
case
; F_IO.Put (Value_1); T_IO.Put (" "); T_IO.Put (Operation); T_IO.Put (" "); F_IO.Put (Value_2); T_IO.Put (" = "); F_IO.Put (Result); <<Exit_Numeric_2>>return
;end
Numeric_2;
Purists might be surprised about the use of goto — but some people prefer the use of goto over the use of multiple return statements if inside functions — given that, the opinions on this topic vary strongly. See the isn't goto evil article.
Multiplication can be done using the predefined operator *. For a demo see the next chapter about Division.
Divisions can be done using the predefined operators /, mod, rem. The operator / performs a normal division, mod returns a modulus division and rem returns the remainder of the modulus division.
The following extended demo shows the use of the , -, * and / operators together as well as the use of a four number wide stack to store intermediate results:
The operators mod and rem are not part of the demonstration as they are only defined for integer types.
with
Ada.Text_IO;procedure
Numeric_3is
procedure
Pop_Value;procedure
Push_Value;type
Value_Typeis
digits
12range
-999_999_999_999.0e999 .. 999_999_999_999.0e999;type
Value_Arrayis
array
(Naturalrange
1 .. 4)of
Value_Type;package
T_IOrenames
Ada.Text_IO;package
F_IOis
new
Ada.Text_IO.Float_IO (Value_Type); Values : Value_Array := (others
=> 0.0); Operation : String (1 .. 40); Last : Natural;procedure
Pop_Valueis
begin
Values (Values'First 1 .. Values'Last) := Values (Values'First 2 .. Values'Last) & 0.0;end
Pop_Value;procedure
Push_Valueis
begin
Values (Values'First 1 .. Values'Last) := Values (Values'First .. Values'Last - 1);end
Push_Value;begin
Main_Loop:loop
T_IO.Put (">"); T_IO.Get_Line (Operation, Last);if
Last = 1and
then
Operation (1) = ' 'then
Values (1) := Values (1) Values (2); Pop_Value;elsif
Last = 1and
then
Operation (1) = '-'then
Values (1) := Values (1) Values (2); Pop_Value;elsif
Last = 1and
then
Operation (1) = '*'then
Values (1) := Values (1) * Values (2); Pop_Value;elsif
Last = 1and
then
Operation (1) = '/'then
Values (1) := Values (1) / Values (2); Pop_Value;elsif
Last = 4and
then
Operation (1 .. 4) = "exit"then
exit
Main_Loop;else
Push_Value; F_IO.Get (From => Operation, Item => Values (1), Last => Last);end
if
; Display_Loop:for
Iin
reverse
Value_Array'Rangeloop
F_IO.Put (Item => Values (I), Fore => F_IO.Default_Fore, Aft => F_IO.Default_Aft, Exp => 4); T_IO.New_Line;end
loop
Display_Loop;end
loop
Main_Loop;return
;end
Numeric_3;
Exponential calculations
[edit | edit source]All exponential functions are defined inside the generic package Ada.Numerics.Generic_Elementary_Functions.
Calculation of the form are performed by the operator **. Beware: There are two versions of this operator. The predefined operator ** allows only for Standard.Integer to be used as exponent. If you need to use a floating point type as exponent you need to use the ** defined in Ada.Numerics.Generic_Elementary_Functions.
Root
[edit | edit source]The square root is calculated with the function Sqrt()
. There is no function defined to calculate an arbitrary root . However you can use logarithms to calculate an arbitrary root using the mathematical identity: which will become root := Exp (Log (a) / b)
in Ada. Alternatively, use which, in Ada, is root := a**(1.0/b)
.
Ada.Numerics.Generic_Elementary_Functions defines a function for both the arbitrary logarithm and the natural logarithm , both of which have the same name Log()
distinguished by the number of parameters.
Demonstration
[edit | edit source]The following extended demo shows the how to use the exponential functions in Ada. The new demo also uses Unbounded_String instead of Strings which make the comparisons easier.
Please note that from now on we won't copy the full sources any more. Do follow the download links to see the full program.
with
Ada.Text_IO;with
Ada.Numerics.Generic_Elementary_Functions;with
Ada.Strings.Unbounded;procedure
Numeric_4is
package
Strrenames
Ada.Strings.Unbounded;package
T_IOrenames
Ada.Text_IO;procedure
Pop_Value;procedure
Push_Value;function
Get_Linereturn
Str.Unbounded_String;type
Value_Typeis
digits
12range
-999_999_999_999.0e999 .. 999_999_999_999.0e999;type
Value_Arrayis
array
(Naturalrange
1 .. 4)of
Value_Type;package
F_IOis
new
Ada.Text_IO.Float_IO (Value_Type);package
Value_Functionsis
new
Ada.Numerics.Generic_Elementary_Functions ( Value_Type);use
Value_Functions;use
type
Str.Unbounded_String; Values : Value_Array := (others
=> 0.0); Operation : Str.Unbounded_String; Dummy : Natural;function
Get_Linereturn
Str.Unbounded_Stringis
BufferSize :constant
:= 2000; Retval : Str.Unbounded_String := Str.Null_Unbounded_String; Item : String (1 .. BufferSize); Last : Natural;begin
Get_Whole_Line :loop
T_IO.Get_Line (Item => Item, Last => Last); Str.Append (Source => Retval, New_Item => Item (1 .. Last));exit
Get_Whole_Linewhen
Last < Item'Last;end
loop
Get_Whole_Line;return
Retval;end
Get_Line; ...begin
Main_Loop :loop
T_IO.Put (">"); Operation := Get_Line; ...elsif
Operation = "e"then
-- insert e Push_Value; Values (1) := Ada.Numerics.e;elsif
Operation = "**"or
else
Operation = "^"then
-- power of x^y Values (1) := Values (1) ** Values (2); Pop_Value;elsif
Operation = "sqr"then
-- square root Values (1) := Sqrt (Values (1));elsif
Operation = "root"then
-- arbritary root Values (1) := Exp (Log (Values (2)) / Values (1)); Pop_Value;elsif
Operation = "ln"then
-- natural logarithm Values (1) := Log (Values (1));elsif
Operation = "log"then
-- based logarithm Values (1) := Log (Base => Values (1), X => Values (2)); Pop_Value;elsif
Operation = "exit
"then
exit
Main_Loop;else
Push_Value; F_IO.Get (From => Str.To_String (Operation), Item => Values (1), Last => Dummy);end
if
; ...end
loop
Main_Loop;return
;end
Numeric_4;
Higher math
[edit | edit source]Trigonometric calculations
[edit | edit source]The full set of trigonometric functions are defined inside the generic package Ada.Numerics.Generic_Elementary_Functions. All functions are defined for 2π and an arbitrary cycle value (a full cycle of revolution).
Please note the difference of calling the Arctan ()
function.
with
Ada.Text_IO;with
Ada.Numerics.Generic_Elementary_Functions;with
Ada.Strings.Unbounded;procedure
Numeric_5is
...procedure
Put_Line (Value :in
Value_Type);use
Value_Functions;use
type
Str.Unbounded_String; Values : Value_Array := (others
=> 0.0); Cycle : Value_Type := Ada.Numerics.Pi; Operation : Str.Unbounded_String; Dummy : Natural; ...procedure
Put_Line (Value :in
Value_Type)is
begin
if
abs
Value_Type'Exponent (Value) >=abs
Value_Type'Exponent (10.0 ** F_IO.Default_Aft)then
F_IO.Put (Item => Value, Fore => F_IO.Default_Aft, Aft => F_IO.Default_Aft, Exp => 4);else
F_IO.Put (Item => Value, Fore => F_IO.Default_Aft, Aft => F_IO.Default_Aft, Exp => 0);end
if
; T_IO.New_Line;return
;end
Put_Line; ...begin
Main_Loop :loop
Display_Loop :for
Iin
reverse
Value_Array'Rangeloop
Put_Line (Values (I));end
loop
Display_Loop; T_IO.Put (">"); Operation := Get_Line; ...elsif
Operation = "deg"then
-- switch to degrees Cycle := 360.0;elsif
Operation = "rad"then
-- switch to degrees Cycle := Ada.Numerics.Pi;elsif
Operation = "grad"then
-- switch to degrees Cycle := 400.0;elsif
Operation = "pi"or
else
Operation = "π"then
-- switch to degrees Push_Value; Values (1) := Ada.Numerics.Pi;elsif
Operation = "sin"then
-- sinus Values (1) := Sin (X => Values (1), Cycle => Cycle);elsif
Operation = "cos"then
-- cosinus Values (1) := Cos (X => Values (1), Cycle => Cycle);elsif
Operation = "tan"then
-- tangents Values (1) := Tan (X => Values (1), Cycle => Cycle);elsif
Operation = "cot"then
-- cotanents Values (1) := Cot (X => Values (1), Cycle => Cycle);elsif
Operation = "asin"then
-- arc-sinus Values (1) := Arcsin (X => Values (1), Cycle => Cycle);elsif
Operation = "acos"then
-- arc-cosinus Values (1) := Arccos (X => Values (1), Cycle => Cycle);elsif
Operation = "atan"then
-- arc-tangents Values (1) := Arctan (Y => Values (1), Cycle => Cycle);elsif
Operation = "acot"then
-- arc-cotanents Values (1) := Arccot (X => Values (1), Cycle => Cycle); ...end
loop
Main_Loop;return
;end
Numeric_5;
The Demo also contains an improved numeric output which behaves more like a normal calculator.
Hyperbolic calculations
[edit | edit source]You guessed it: The full set of hyperbolic functions is defined inside the generic package Ada.Numerics.Generic_Elementary_Functions.
with
Ada.Text_IO;with
Ada.Numerics.Generic_Elementary_Functions;with
Ada.Strings.Unbounded;with
Ada.Exceptions;procedure
Numeric_6is
package
Strrenames
Ada.Strings.Unbounded;package
T_IOrenames
Ada.Text_IO;package
Exeptrenames
Ada.Exceptions; ...begin
Main_Loop :loop
Try :begin
Display_Loop : ...elsif
Operation = "sinh"then
-- sinus hyperbolic Values (1) := Sinh (Values (1));elsif
Operation = "cosh"then
-- cosinus hyperbolic Values (1) := Coth (Values (1));elsif
Operation = "tanh"then
-- tangents hyperbolic Values (1) := Tanh (Values (1));elsif
Operation = "coth"then
-- cotanents hyperbolic Values (1) := Coth (Values (1));elsif
Operation = "asinh"then
-- arc-sinus hyperbolic Values (1) := Arcsinh (Values (1));elsif
Operation = "acosh"then
-- arc-cosinus hyperbolic Values (1) := Arccosh (Values (1));elsif
Operation = "atanh"then
-- arc-tangents hyperbolic Values (1) := Arctanh (Values (1));elsif
Operation = "acoth"then
-- arc-cotanents hyperbolic Values (1) := Arccoth (Values (1)); ...exception
when
An_Exception :others
=> T_IO.Put_Line (Exept.Exception_Information (An_Exception));end
Try;end
loop
Main_Loop;return
;end
Numeric_6;
As added bonus this version supports error handling and therefore won't just crash when an illegal calculation is performed.
Complex arithmethic
[edit | edit source]For complex arithmetic Ada provides the package Ada.Numerics.Generic_Complex_Types. This package is part of the "special need Annexes" which means it is optional. The open source Ada compiler GNAT implements all "special need Annexes" and therefore has complex arithmetic available.
Since Ada supports user defined operators, all ( , -, *) operators have their usual meaning as soon as the package Ada.Numerics.Generic_Complex_Types has been instantiated (package
... is
new
...) and the type has been made visible (use
type
...)
Ada also provides the packages Ada.Text_IO.Complex_IO and Ada.Numerics.Generic_Complex_Elementary_Functions which provide similar functionality to their normal counterparts. But there are some differences:
- Ada.Numerics.Generic_Complex_Elementary_Functions supports only the exponential and trigonometric functions which make sense in complex arithmetic.
- Ada.Text_IO.Complex_IO is a child package of Ada.Text_IO and therefore needs its own
with
. Note: theAda.Text_IO.Complex_IOGet ()
function is pretty fault tolerant - if you forget the "," or the "()" pair it will still parse the input correctly.
So, with only a very few modifications you can convert your "normals" calculator to a calculator for complex arithmetic:
with
Ada.Text_IO.Complex_IO;with
Ada.Numerics.Generic_Complex_Types;with
Ada.Numerics.Generic_Complex_Elementary_Functions;with
Ada.Strings.Unbounded;with
Ada.Exceptions;procedure
Numeric_7is
...package
Complex_Typesis
new
Ada.Numerics.Generic_Complex_Types ( Value_Type);package
Complex_Functionsis
new
Ada.Numerics.Generic_Complex_Elementary_Functions ( Complex_Types);package
C_IOis
new
Ada.Text_IO.Complex_IO (Complex_Types);type
Value_Arrayis
array
(Naturalrange
1 .. 4)of
Complex_Types.Complex;procedure
Put_Line (Value :in
Complex_Types.Complex);use
type
Complex_Types.Complex;use
type
Str.Unbounded_String;use
Complex_Functions; Values : Value_Array := (others
=> Complex_Types.Complex'(Re => 0.0, Im => 0.0)); ...procedure
Put_Line (Value :in
Complex_Types.Complex)is
begin
if
(abs
Value_Type'Exponent (Value.Re) >=abs
Value_Type'Exponent (10.0 ** C_IO.Default_Aft))or
else
(abs
Value_Type'Exponent (Value.Im) >=abs
Value_Type'Exponent (10.0 ** C_IO.Default_Aft))then
C_IO.Put (Item => Value, Fore => C_IO.Default_Aft, Aft => C_IO.Default_Aft, Exp => 4);else
C_IO.Put (Item => Value, Fore => C_IO.Default_Aft, Aft => C_IO.Default_Aft, Exp => 0);end
if
; T_IO.New_Line;return
;end
Put_Line;begin
...elsif
Operation = "e"then
-- insert e Push_Value; Values (1) := Complex_Types.Complex'(Re => Ada.Numerics.e, Im => 0.0); ...elsif
Operation = "pi"or
else
Operation = "π"then
-- insert pi Push_Value; Values (1) := Complex_Types.Complex'(Re => Ada.Numerics.Pi, Im => 0.0);elsif
Operation = "sin"then
-- sinus Values (1) := Sin (Values (1));elsif
Operation = "cos"then
-- cosinus Values (1) := Cot (Values (1));elsif
Operation = "tan"then
-- tangents Values (1) := Tan (Values (1));elsif
Operation = "cot"then
-- cotanents Values (1) := Cot (Values (1));elsif
Operation = "asin"then
-- arc-sinus Values (1) := Arcsin (Values (1));elsif
Operation = "acos"then
-- arc-cosinus Values (1) := Arccos (Values (1));elsif
Operation = "atan"then
-- arc-tangents Values (1) := Arctan (Values (1));elsif
Operation = "acot"then
-- arc-cotanents Values (1) := Arccot (Values (1)); ...return
;end
Numeric_7;
Vector and Matrix Arithmetic
[edit | edit source]Ada supports vector and matrix Arithmetic for both normal real types and complex types. For those, the generic packages Ada.Numerics.Generic_Real_Arrays and Ada.Numerics.Generic_Complex_Arrays are used. Both packages offer the usual set of operations, however there is no I/O package and understandably, no package for elementary functions.
Since there is no I/O package for vector and matrix I/O creating a demo is by far more complex — and hence not ready yet. You can have a look at the current progress which will be a universal calculator merging all feature.
Status: Stalled - for a Vector and Matrix stack we need Indefinite_Vectors — which are currently not part of GNAT/Pro. Well I could use the booch components ...
See also
[edit | edit source]Wikibook
[edit | edit source]- Ada Programming
- Ada Programming/Delimiters/-
- Ada Programming/Libraries/Ada.Numerics.Generic Complex Types
- Ada Programming/Libraries/Ada.Numerics.Generic Elementary Functions
Ada 95 Reference Manual
[edit | edit source]- 4.4: Expressions [Annotated]
- A.5.1: Elementary Functions [Annotated]
- A.10.1: The Package Text_IO [Annotated]
- G.1: Complex Arithmetic [Annotated]
- G.3: Vector and Matrix Manipulation [Annotated]