Talk:Borsuk–Ulam theorem
This article is rated C-class on Wikipedia's content assessment scale. It is of interest to the following WikiProjects: | |||||||||||
|
no archives yet (create) |
This page has archives. Sections older than 365 days may be automatically archived by Lowercase sigmabot III when more than 5 sections are present. |
Untitled
editdespite being listed as an intuitively appealing theorem in the topology page this is all confused to a lay person. not to the degree of i don't quite understand some parts of it, i only understand one part of it (the earth example) but that doesn't really make sense and i don't know how to incorporate that into some greater understanding. it would be nice if that changed.Beckeckeck (talk) 10:55, 29 December 2008 (UTC)
Proof of the stronger theorem in tex (this should be translated into wiki tex)
edit\newcommand{\Z}{\mathbb{Z}} \newcommand{\Zt}{\Z_2} Proof: We go by induction on $n$. Consider the pair $(S^n,A)$ where $A$ is the equatorial sphere. $f$ defines a map $$\tilde{f}:\mathbb{R}P^n\to\mathbb{R}P^n$$. By cellular approximation, this may be assumed to take the hyperplane at infinity (the $n-1$-cell of the standard cell structure on $\mathbb{R}P^n$) to itself. Since whether a map lifts to a covering depends only on its homotopy class, $f$ is homotopic to an odd map taking $A$ to itself. We may assume that $f$ is such a map.
The map $f$ gives us a morphism of the long exact sequences: $$\begin{CD} H_n(A;\Zt)@>i>> H_n(S^n;\Zt)@>j>> H_n(S^n,A;\Zt)@>\partial>> H_{n-1}(A;\Zt) @>i>> H_{n-1}(S^n,A;\Zt)\\ @Vf^*VV @Vf^*VV @Vf^*VV @Vf^*VV @Vf^*VV \\ H_n(A;\Zt)@>i>> H_n(S^n;\Zt)@>j>> H_n(S^n,A;\Zt)@>\partial>> H_{n-1}(A;\Zt) @>i>> H_{n-1}(S^n,A;\Zt)\\ \end{CD}$$
Clearly, the map $f|_A$ is odd, so by the induction hypothesis, $f|_A$ has odd degree. Note that a map has odd degree if and only if $f^*:H_n(S^n;\Zt)\to H_n(S^n,\Zt)$ is an isomorphism. Thus $$f^*:H_{n-1}(A;\Zt)\to H_{n-1}(A;\Zt)$$ is an isomorphism. By the commutativity of the diagram, the map $$f^*:H_n(S^n,A;\Zt)\to H_n(S^n,A;\Zt)$$ is not trivial. I claim it is an isomorphism. $H_n(S^n,A;\Zt)$ is generated by cycles $[R^ ]$ and $[R^-]$ which are the fundamental classes of the upper and lower hemispheres, and the antipodal map exchanges these. Both of these map to the fundamental class of $A$, $[A]\in H_{n-1}(A;\Zt)$. By the commutativity of the diagram, $\partial(f^*([R^\pm]))=f^*(\partial([R^\pm]))=f^*([A])=[A]$. Thus $f^*([R^ ])=[R^\pm]$ and $f^*([R^-]) =[R^\mp]$ since $f$ commutes with the antipodal map. Thus $f^*$ is an isomorphism on $H_n(S^n,A;\Zt)$. Since $H_n(A,\Zt)=0$, by the exactness of the sequence $i:H_n(S^n;\Zt) \to H_n(S^n,A;\Zt)$ is injective, and so by the commutativity of the diagram (or equivalently by the $5$-lemma) $f^*:H_n(S^n;\Zt)\to H_n(S^n;\Zt)$ is an isomorphism. Thus $f$ has odd degree. QED. — Preceding unsigned comment added by Veltzerdoron (talk • contribs) 20:58, 29 March 2012 (UTC)
- The above is a cut and paste (I think) from PlanetMath. Here is the link: http://planetmath.org/encyclopedia/ProofOfBorsukUlamTheorem.html -- Now, PlanetMath is CC Attribution, so we are probably fine if we just add a link someplace. It still is a bit strange... Best, Sam nead (talk) 09:46, 27 February 2013 (UTC)
First sentence in proof should be changed
editThe first sentence in the proof says:
- "We use the stronger statement that every odd (antipodes-preserving) mapping h : Sn−1 → Sn−1 has odd degree."
This raises several questions:
- What is the name of this "stronger statement"?
- Why is it correct? Where is it proved?
- What is an "antipodes-preserving map"?
I think there should at least be a link to a page which explains this claim in more detail. --Erel Segal (talk) 08:26, 18 May 2015 (UTC)
- I added some explanations about odd functions. I hope they are correct. --Erel Segal (talk) 17:35, 21 May 2015 (UTC)
Links to references don't work
editFor example, when I click on the link "Borsuk 1933" in the 2nd paragraph of the lead section, nothing happens. --Erel Segal (talk) 08:31, 18 May 2015 (UTC)
Something missing from combinatorial proof
editI believe something is missing from the combinatorial proof. The construction begins with an epsilon and then concludes some points that map epsilon-close to zero. Then it says "epsilon was arbitrary so there is a point mapping to zero." But since the triangulation depends on epsilon, the concluded points may not be close to each other. One needs to invoke compactness of $S^n$ to make this work. Choose a sequence of epsilons $\to 0$, conclude a sequence of points, invoke compactness to conclude that this sequence has a limit point, and invoke continuity to conclude that the image of this limit point is zero. — Preceding unsigned comment added by 128.122.20.244 (talk) 16:45, 27 October 2016 (UTC)
- Yes, that's correct. I alluded to this argument by mentioning compactness in the last sentence of the proof. AxelBoldt (talk) 21:37, 26 February 2020 (UTC)