A partial solar eclipse occurred at the Moon’s ascending node of orbit on Saturday, July 1, 2000,[1] with a magnitude of 0.4768. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
Solar eclipse of July 1, 2000 | |
---|---|
Type of eclipse | |
Nature | Partial |
Gamma | −1.2821 |
Magnitude | 0.4768 |
Maximum eclipse | |
Coordinates | 66°54′S 109°30′W / 66.9°S 109.5°W |
Times (UTC) | |
Greatest eclipse | 19:33:34 |
References | |
Saros | 117 (68 of 71) |
Catalog # (SE5000) | 9509 |
This was the second of four partial solar eclipses in 2000, with the others occurring on February 5, July 31, and December 25.
A partial eclipse was visible for parts of extreme southern South America near sunset.
Images
editEclipse details
editShown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse.[2]
Event | Time (UTC) |
---|---|
First Penumbral External Contact | 2000 July 01 at 18:08:10.9 UTC |
Ecliptic Conjunction | 2000 July 01 at 19:20:59.0 UTC |
Equatorial Conjunction | 2000 July 01 at 19:31:09.1 UTC |
Greatest Eclipse | 2000 July 01 at 19:33:33.8 UTC |
Last Penumbral External Contact | 2000 July 01 at 20:58:57.6 UTC |
Parameter | Value |
---|---|
Eclipse Magnitude | 0.47678 |
Eclipse Obscuration | 0.37185 |
Gamma | −1.28214 |
Sun Right Ascension | 06h44m34.3s |
Sun Declination | 23°02'33.1" |
Sun Semi-Diameter | 15'43.8" |
Sun Equatorial Horizontal Parallax | 08.6" |
Moon Right Ascension | 06h44m40.5s |
Moon Declination | 21°44'04.7" |
Moon Semi-Diameter | 16'43.1" |
Moon Equatorial Horizontal Parallax | 1°01'21.5" |
ΔT | 63.9 s |
Eclipse season
editThis eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight. The first and last eclipse in this sequence is separated by one synodic month.
July 1 Ascending node (new moon) |
July 16 Descending node (full moon) |
July 31 Ascending node (new moon) |
---|---|---|
Partial solar eclipse Solar Saros 117 |
Total lunar eclipse Lunar Saros 129 |
Partial solar eclipse Solar Saros 155 |
Related eclipses
editEclipses in 2000
edit- A total lunar eclipse on January 21.
- A partial solar eclipse on February 5.
- A partial solar eclipse on July 1.
- A total lunar eclipse on July 16.
- A partial solar eclipse on July 31.
- A partial solar eclipse on December 25.
Metonic
edit- Followed by: Solar eclipse of April 19, 2004
Tzolkinex
edit- Preceded by: Solar eclipse of May 21, 1993
Half-Saros
edit- Preceded by: Lunar eclipse of June 27, 1991
- Followed by: Lunar eclipse of July 7, 2009
Tritos
edit- Followed by: Solar eclipse of June 1, 2011
Solar Saros 117
edit- Preceded by: Solar eclipse of June 21, 1982
- Followed by: Solar eclipse of July 13, 2018
Inex
edit- Preceded by: Solar eclipse of July 22, 1971
- Followed by: Solar eclipse of June 12, 2029
Triad
edit- Preceded by: Solar eclipse of August 31, 1913
- Followed by: Solar eclipse of May 2, 2087
Solar eclipses of 2000–2003
editThis eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[3]
The partial solar eclipses on February 5, 2000 and July 31, 2000 occur in the previous lunar year eclipse set.
Solar eclipse series sets from 2000 to 2003 | ||||||
---|---|---|---|---|---|---|
Ascending node | Descending node | |||||
Saros | Map | Gamma | Saros | Map | Gamma | |
117 | July 1, 2000 Partial |
−1.28214 | 122 Partial projection in Minneapolis, MN, USA |
December 25, 2000 Partial |
1.13669 | |
127 Totality in Lusaka, Zambia |
June 21, 2001 Total |
−0.57013 | 132 Partial in Minneapolis, MN, USA |
December 14, 2001 Annular |
0.40885 | |
137 Partial in Los Angeles, CA, USA |
June 10, 2002 Annular |
0.19933 | 142 Totality in Woomera, South Australia |
December 4, 2002 Total |
−0.30204 | |
147 Annularity in Culloden, Scotland |
May 31, 2003 Annular |
0.99598 | 152 |
November 23, 2003 Total |
−0.96381 |
Saros 117
editThis eclipse is a part of Saros series 117, repeating every 18 years, 11 days, and containing 71 events. The series started with a partial solar eclipse on June 24, 792 AD. It contains annular eclipses from September 18, 936 AD through May 14, 1333; hybrid eclipses from May 25, 1351 through July 8, 1423; and total eclipses from July 18, 1441 through May 19, 1928. The series ends at member 71 as a partial eclipse on August 3, 2054. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.
The longest duration of annularity was produced by member 16 at 9 minutes, 26 seconds on December 3, 1062, and the longest duration of totality was produced by member 62 at 4 minutes, 19 seconds on April 26, 1892. All eclipses in this series occur at the Moon’s ascending node of orbit.[4]
Series members 57–71 occur between 1801 and 2054: | ||
---|---|---|
57 | 58 | 59 |
March 4, 1802 |
March 14, 1820 |
March 25, 1838 |
60 | 61 | 62 |
April 5, 1856 |
April 16, 1874 |
April 26, 1892 |
63 | 64 | 65 |
May 9, 1910 |
May 19, 1928 |
May 30, 1946 |
66 | 67 | 68 |
June 10, 1964 |
June 21, 1982 |
July 1, 2000 |
69 | 70 | 71 |
July 13, 2018 |
July 23, 2036 |
August 3, 2054 |
Metonic series
editThe metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.
21 eclipse events between July 1, 2000 and July 1, 2076 | ||||
---|---|---|---|---|
July 1–2 | April 19–20 | February 5–7 | November 24–25 | September 12–13 |
117 | 119 | 121 | 123 | 125 |
July 1, 2000 |
April 19, 2004 |
February 7, 2008 |
November 25, 2011 |
September 13, 2015 |
127 | 129 | 131 | 133 | 135 |
July 2, 2019 |
April 20, 2023 |
February 6, 2027 |
November 25, 2030 |
September 12, 2034 |
137 | 139 | 141 | 143 | 145 |
July 2, 2038 |
April 20, 2042 |
February 5, 2046 |
November 25, 2049 |
September 12, 2053 |
147 | 149 | 151 | 153 | 155 |
July 1, 2057 |
April 20, 2061 |
February 5, 2065 |
November 24, 2068 |
September 12, 2072 |
157 | ||||
July 1, 2076 |
Tritos series
editThis eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.
The partial solar eclipses on April 8, 1902 (part of Saros 108) and January 5, 1935 (part of Saros 111) are also a part of this series but are not included in the table below.
Series members between 2000 and 2200 | ||||
---|---|---|---|---|
July 1, 2000 (Saros 117) |
June 1, 2011 (Saros 118) |
April 30, 2022 (Saros 119) |
March 30, 2033 (Saros 120) |
February 28, 2044 (Saros 121) |
January 27, 2055 (Saros 122) |
December 27, 2065 (Saros 123) |
November 26, 2076 (Saros 124) |
October 26, 2087 (Saros 125) |
September 25, 2098 (Saros 126) |
August 26, 2109 (Saros 127) |
July 25, 2120 (Saros 128) |
June 25, 2131 (Saros 129) |
May 25, 2142 (Saros 130) |
April 23, 2153 (Saros 131) |
March 23, 2164 (Saros 132) |
February 21, 2175 (Saros 133) |
January 20, 2186 (Saros 134) |
December 19, 2196 (Saros 135) |
Inex series
editThis eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.
Series members between 1801 and 2200 | ||
---|---|---|
October 31, 1826 (Saros 111) |
||
August 31, 1913 (Saros 114) |
August 12, 1942 (Saros 115) |
July 22, 1971 (Saros 116) |
July 1, 2000 (Saros 117) |
June 12, 2029 (Saros 118) |
May 22, 2058 (Saros 119) |
May 2, 2087 (Saros 120) |
April 13, 2116 (Saros 121) |
March 23, 2145 (Saros 122) |
March 3, 2174 (Saros 123) |
References
edit- ^ "July 1, 2000 Partial Solar Eclipse". timeanddate. Retrieved 10 August 2024.
- ^ "Partial Solar Eclipse of 2000 Jul 01". EclipseWise.com. Retrieved 10 August 2024.
- ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
- ^ "NASA - Catalog of Solar Eclipses of Saros 117". eclipse.gsfc.nasa.gov.
External links
edit- Earth visibility chart and eclipse statistics Eclipse Predictions by Fred Espenak, NASA/GSFC