Solar eclipse of December 16, 2085

An annular solar eclipse will occur at the Moon's ascending node of orbit between Sunday, December 16 and Monday, December 17, 2085,[1] with a magnitude of 0.9971. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 3.7 days before perigee (on December 20, 2085, at 14:40 UTC), the Moon's apparent diameter will be larger.[2]

Solar eclipse of December 16, 2085
Map
Type of eclipse
NatureAnnular
Gamma0.2786
Magnitude0.9971
Maximum eclipse
Duration19 s (0 min 19 s)
Coordinates7°18′S 160°48′W / 7.3°S 160.8°W / -7.3; -160.8
Max. width of band10 km (6.2 mi)
Times (UTC)
Greatest eclipse22:37:48
References
Saros143 (27 of 72)
Catalog # (SE5000)9700

The path of annularity will be visible from parts of Micronesia and southwestern Mexico. A partial solar eclipse will also be visible for parts of northern Australia, Oceania, Hawaii, and western North America.

Eclipse details

edit

Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse.[3]

December 16, 2085 Solar Eclipse Times
Event Time (UTC)
First Penumbral External Contact 2085 December 16 at 19:52:02.9 UTC
First Umbral External Contact 2085 December 16 at 20:52:55.2 UTC
First Central Line 2085 December 16 at 20:53:32.4 UTC
Greatest Duration 2085 December 16 at 20:53:32.4 UTC
First Umbral Internal Contact 2085 December 16 at 20:54:09.7 UTC
First Penumbral Internal Contact 2085 December 16 at 21:59:46.9 UTC
Greatest Eclipse 2085 December 16 at 22:37:47.8 UTC
Equatorial Conjunction 2085 December 16 at 22:39:48.7 UTC
Ecliptic Conjunction 2085 December 16 at 22:40:48.4 UTC
Last Penumbral Internal Contact 2085 December 16 at 23:15:46.8 UTC
Last Umbral Internal Contact 2085 December 17 at 00:21:26.6 UTC
Last Central Line 2085 December 17 at 00:22:01.1 UTC
Last Umbral External Contact 2085 December 17 at 00:22:35.6 UTC
Last Penumbral External Contact 2085 December 17 at 01:23:25.8 UTC
December 16, 2085 Solar Eclipse Parameters
Parameter Value
Eclipse Magnitude 0.99714
Eclipse Obscuration 0.99428
Gamma 0.27864
Sun Right Ascension 17h41m09.8s
Sun Declination -23°21'25.3"
Sun Semi-Diameter 16'15.0"
Sun Equatorial Horizontal Parallax 08.9"
Moon Right Ascension 17h41m05.1s
Moon Declination -23°05'11.3"
Moon Semi-Diameter 15'57.1"
Moon Equatorial Horizontal Parallax 0°58'32.5"
ΔT 110.5 s

Eclipse season

edit

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.

Eclipse season of December 2085
December 1
Descending node (full moon)
December 16
Ascending node (new moon)
 
Penumbral lunar eclipse
Lunar Saros 117
Annular solar eclipse
Solar Saros 143
edit

Eclipses in 2085

edit

Metonic

edit

Tzolkinex

edit

Half-Saros

edit

Tritos

edit

Solar Saros 143

edit

Inex

edit

Triad

edit

Solar eclipses of 2083–2087

edit

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[4]

The partial solar eclipses on February 16, 2083 and August 13, 2083 occur in the previous lunar year eclipse set, and the partial solar eclipses on May 2, 2087 and October 26, 2087 occur in the next lunar year eclipse set.

Solar eclipse series sets from 2083 to 2087
Descending node   Ascending node
Saros Map Gamma Saros Map Gamma
118 July 15, 2083
 
Partial
1.5465 123 January 7, 2084
 
Partial
−1.0715
128 July 3, 2084
 
Annular
0.8208 133 December 27, 2084
 
Total
−0.4094
138 June 22, 2085
 
Annular
0.0452 143 December 16, 2085
 
Annular
0.2786
148 June 11, 2086
 
Total
−0.7215 153 December 6, 2086
 
Partial
1.0194
158 June 1, 2087
 
Partial
−1.4186

Saros 143

edit

This eclipse is a part of Saros series 143, repeating every 18 years, 11 days, and containing 72 events. The series started with a partial solar eclipse on March 7, 1617. It contains total eclipses from June 24, 1797 through October 24, 1995; hybrid eclipses from November 3, 2013 through December 6, 2067; and annular eclipses from December 16, 2085 through September 16, 2536. The series ends at member 72 as a partial eclipse on April 23, 2897. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of totality was produced by member 16 at 3 minutes, 50 seconds on August 19, 1887, and the longest duration of annularity will be produced by member 51 at 4 minutes, 54 seconds on September 6, 2518. All eclipses in this series occur at the Moon’s ascending node of orbit.[5]

Series members 12–33 occur between 1801 and 2200:
12 13 14
 
July 6, 1815
 
July 17, 1833
 
July 28, 1851
15 16 17
 
August 7, 1869
 
August 19, 1887
 
August 30, 1905
18 19 20
 
September 10, 1923
 
September 21, 1941
 
October 2, 1959
21 22 23
 
October 12, 1977
 
October 24, 1995
 
November 3, 2013
24 25 26
 
November 14, 2031
 
November 25, 2049
 
December 6, 2067
27 28 29
 
December 16, 2085
 
December 29, 2103
 
January 8, 2122
30 31 32
 
January 20, 2140
 
January 30, 2158
 
February 10, 2176
33
 
February 21, 2194

Metonic series

edit

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.

21 eclipse events between July 23, 2036 and July 23, 2112
July 23–24 May 11 February 27–28 December 16–17 October 4–5
117 119 121 123 125
 
July 23, 2036
 
May 11, 2040
 
February 28, 2044
 
December 16, 2047
 
October 4, 2051
127 129 131 133 135
 
July 24, 2055
 
May 11, 2059
 
February 28, 2063
 
December 17, 2066
 
October 4, 2070
137 139 141 143 145
 
July 24, 2074
 
May 11, 2078
 
February 27, 2082
 
December 16, 2085
 
October 4, 2089
147 149 151 153 155
 
July 23, 2093
 
May 11, 2097
 
February 28, 2101
 
December 17, 2104
 
October 5, 2108
157
 
July 23, 2112

Tritos series

edit

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
 
March 4, 1802
(Saros 117)
 
February 1, 1813
(Saros 118)
 
January 1, 1824
(Saros 119)
 
November 30, 1834
(Saros 120)
 
October 30, 1845
(Saros 121)
 
September 29, 1856
(Saros 122)
 
August 29, 1867
(Saros 123)
 
July 29, 1878
(Saros 124)
 
June 28, 1889
(Saros 125)
 
May 28, 1900
(Saros 126)
 
April 28, 1911
(Saros 127)
 
March 28, 1922
(Saros 128)
 
February 24, 1933
(Saros 129)
 
January 25, 1944
(Saros 130)
 
December 25, 1954
(Saros 131)
 
November 23, 1965
(Saros 132)
 
October 23, 1976
(Saros 133)
 
September 23, 1987
(Saros 134)
 
August 22, 1998
(Saros 135)
 
July 22, 2009
(Saros 136)
 
June 21, 2020
(Saros 137)
 
May 21, 2031
(Saros 138)
 
April 20, 2042
(Saros 139)
 
March 20, 2053
(Saros 140)
 
February 17, 2064
(Saros 141)
 
January 16, 2075
(Saros 142)
 
December 16, 2085
(Saros 143)
 
November 15, 2096
(Saros 144)
 
October 16, 2107
(Saros 145)
 
September 15, 2118
(Saros 146)
 
August 15, 2129
(Saros 147)
 
July 14, 2140
(Saros 148)
 
June 14, 2151
(Saros 149)
 
May 14, 2162
(Saros 150)
 
April 12, 2173
(Saros 151)
 
March 12, 2184
(Saros 152)
 
February 10, 2195
(Saros 153)

Inex series

edit

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
 
June 16, 1825
(Saros 134)
 
May 26, 1854
(Saros 135)
 
May 6, 1883
(Saros 136)
 
April 17, 1912
(Saros 137)
 
March 27, 1941
(Saros 138)
 
March 7, 1970
(Saros 139)
 
February 16, 1999
(Saros 140)
 
January 26, 2028
(Saros 141)
 
January 5, 2057
(Saros 142)
 
December 16, 2085
(Saros 143)
 
November 27, 2114
(Saros 144)
 
November 7, 2143
(Saros 145)
 
October 17, 2172
(Saros 146)

Notes

edit
  1. ^ "December 16–17, 2085 Annular Solar Eclipse". timeanddate. Retrieved 23 August 2024.
  2. ^ "Moon Distances for London, United Kingdom, England". timeanddate. Retrieved 23 August 2024.
  3. ^ "Annular Solar Eclipse of 2085 Dec 16". EclipseWise.com. Retrieved 23 August 2024.
  4. ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  5. ^ "NASA - Catalog of Solar Eclipses of Saros 143". eclipse.gsfc.nasa.gov.

References

edit