Sodium sulfide is a chemical compound with the formula Na2S, or more commonly its hydrate Na2S·9H2O. Both the anhydrous and the hydrated salts in pure crystalline form are colorless solids, although technical grades of sodium sulfide are generally yellow to brick red owing to the presence of polysulfides and commonly supplied as a crystalline mass, in flake form, or as a fused solid. They are water-soluble, giving strongly alkaline solutions. When exposed to moisture, Na2S immediately hydrates to give sodium hydrosulfide.
Names | |
---|---|
Other names
Disodium sulfide
| |
Identifiers | |
3D model (JSmol)
|
|
ChEBI | |
ChemSpider | |
ECHA InfoCard | 100.013.829 |
EC Number |
|
PubChem CID
|
|
RTECS number |
|
UNII |
|
UN number | 1385 (anhydrous) 1849 (hydrate) |
CompTox Dashboard (EPA)
|
|
| |
| |
Properties | |
Na2S | |
Molar mass | 78.0452 g/mol (anhydrous) 240.18 g/mol (nonahydrate) |
Appearance | colorless, hygroscopic solid |
Odor | none |
Density | 1.856 g/cm3 (anhydrous) 1.58 g/cm3 (pentahydrate) 1.43 g/cm3 (nonohydrate) |
Melting point | 1,176 °C (2,149 °F; 1,449 K) (anhydrous) 100 °C (pentahydrate) 50 °C (nonahydrate) |
12.4 g/100 mL (0 °C) 18.6 g/100 mL (20 °C) 39 g/100 mL (50 °C) (hydrolyses) | |
Solubility | insoluble in ether slightly soluble in alcohol[1] |
−39.0·10−6 cm3/mol | |
Structure | |
Antifluorite (cubic), cF12 | |
Fm3m, No. 225 | |
Tetrahedral (Na ); cubic (S2−) | |
Hazards | |
GHS labelling: | |
Danger | |
H302, H311, H314, H400 | |
P260, P264, P270, P273, P280, P301 P312, P301 P330 P331, P302 P352, P303 P361 P353, P304 P340, P305 P351 P338, P310, P312, P321, P322, P330, P361, P363, P391, P405, P501 | |
NFPA 704 (fire diamond) | |
> 480 °C (896 °F; 753 K) | |
Safety data sheet (SDS) | ICSC 1047 |
Related compounds | |
Other anions
|
Sodium oxide Sodium selenide Sodium telluride Sodium polonide |
Other cations
|
Lithium sulfide Potassium sulfide Rubidium sulfide Caesium sulfide |
Related compounds
|
Sodium hydrosulfide |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
|
Some commercial samples are specified as Na2S·xH2O, where a weight percentage of Na2S is specified. Commonly available grades have around 60% Na2S by weight, which means that x is around 3. These grades of sodium sulfide are often marketed as 'sodium sulfide flakes'. These samples consist of NaSH, NaOH, and water.
Structure
editThe structures of sodium sulfides have been determined by X-ray crystallography. The nonahydrate features S2- hydrogen-bonded to 12 water molecules.[2] The pentahydrate consists of S2- centers bound to Na and encased by an array of hydrogen bonds.[3] Anhydrous Na2S, which is rarely encountered, adopts the antifluorite structure,[4][5] which means that the Na centers occupy sites of the fluoride in the CaF2 framework, and the larger S2− occupy the sites for Ca2 .
Production
editIndustrially Na2S is produced by carbothermic reduction of sodium sulfate often using coal:[6]
- Na2SO4 2 C → Na2S 2 CO2
In the laboratory, the salt can be prepared by reduction of sulfur with sodium in anhydrous ammonia, or by sodium in dry THF with a catalytic amount of naphthalene (forming sodium naphthalenide):[7]
- 2 Na S → Na2S
Reactions with inorganic reagents
editThe sulfide ion in sulfide salts such as sodium sulfide can incorporate a proton into the salt by protonation:
- S2−
H → SH−
Because of this capture of the proton ( H ), sodium sulfide has basic character. Sodium sulfide is strongly basic, able to absorb two protons. Its conjugate acid is sodium hydrosulfide (SH−
). An aqueous solution contains a significant portion of sulfide ions that are singly protonated.
Sodium sulfide is unstable in the presence of water due to the gradual loss of hydrogen sulfide into the atmosphere.
When heated with oxygen and carbon dioxide, sodium sulfide can oxidize to sodium carbonate and sulfur dioxide:
- 2 Na2S 3 O2 2 CO2 → 2 Na2CO3 2 SO2
Oxidation with hydrogen peroxide gives sodium sulfate:[8]
- Na2S 4 H2O2 → 4 H2O Na2SO4
Upon treatment with sulfur, sodium polysulfides are formed:
- 2 Na2S S8 → 2 Na2S5
Pulp and paper industry
editIn terms of its dominant use, "sodium sulfide" is primarily used in the kraft process in the pulp and paper industry. It aids in the delignification process, affording cellulose, which is the main component of paper.
It is used in water treatment as an oxygen scavenger agent and also as a metals precipitant; in chemical photography for toning black and white photographs; in the textile industry as a bleaching agent, for desulfurising and as a dechlorinating agent; and in the leather trade for the sulfitisation of tanning extracts. It is used in chemical manufacturing as a sulfonation and sulfomethylation agent. It is used in the production of rubber chemicals, sulfur dyes and other chemical compounds. It is used in other applications including ore flotation, oil recovery, making dyes, and detergent. It is also used during leather processing, as an unhairing agent in the liming operation.
Reagent in organic chemistry
editInstallation of carbon-sulfur bonds
editAlkylation of sodium sulfide give thioethers:
- Na2S 2 RX → R2S 2 NaX
Even aryl halides participate in this reaction.[9] By a broadly similar process sodium sulfide can react with alkenes in the thiol-ene reaction to give thioethers. Sodium sulfide can be used as nucleophile in Sandmeyer type reactions.[10]
Reducing agent
editAqueous solution of sodium sulfide will reduce nitro groups to amine. This conversion is applied to production of some azo dyes since other reducible groups, e.g. azo group, remain intact.[11] The reduction of nitro aromatic compounds to amines using sodium sulfide is known as the Zinin reaction in honor of its discoverer.[12] Hydrated sodium sulfide reduces 1,3-dinitrobenzene derivatives to the 3-nitroanilines.[13]
Other reactions
editSulfide has also been employed in photocatalytic applications.[14]
Safety
editConsisting of the equivalent of sodium hydroxide, sodium sulfide is strongly alkaline and can cause chemical burns. It reacts rapidly with acids to produce hydrogen sulfide, which is highly toxic.
References
edit- ^ Kurzin, Alexander V.; Evdokimov, Andrey N.; Golikova, Valerija S.; Pavlova, Olesja S. (June 9, 2010). "Solubility of Sodium Sulfide in Alcohols". J. Chem. Eng. Data. 55 (9): 4080–4081. doi:10.1021/je100276c.
- ^ Preisinger, A.; Mereiter, K.; Baumgartner, O.; Heger, G.; Mikenda, W.; Steidl, H. (1982). "Hydrogen Bonds in Na2S·9D2O: Neutron Diffraction, X-Ray Diffraction and Vibrational Spectroscopic Studies". Inorganica Chimica Acta. 57: 237–246. doi:10.1016/S0020-1693(00)86975-3.
- ^ Mereiter, Kurt; Preisinger, Anton; Zellner, Andrea; Mikenda, Werner; Steidl, Heinz (1984). "Hydrogen Bonds in Na2S·5H2O: X-ray Diffraction and Vibrational Spectroscopic Study". J. Chem. Soc., Dalton Trans. (7): 1275–1277. doi:10.1039/dt9840001275.
- ^ Zintl, E; Harder, A; Dauth, B. (1934). "Gitterstruktur der oxyde, sulfide, selenide und telluride des lithiums, natriums und kaliums". Z. Elektrochem. Angew. Phys. Chem. 40: 588–93.
- ^ Wells, A.F. (1984) Structural Inorganic Chemistry, Oxford: Clarendon Press. ISBN 0-19-855370-6.
- ^ Holleman, A.F.; Wiberg, E. (2001). Inorganic Chemistry. San Diego: Academic Press. ISBN 0-12-352651-5..
- ^ So, J.-H; Boudjouk, P; Hong, Harry H.; Weber, William P. (2007). "Hexamethyldisilathiane". Inorg. Synth. 29: 30–32. doi:10.1002/9780470132609.ch11. ISBN 978-0-470-13260-9.
- ^ L. Lange, W. Triebel, "Sulfides, Polysulfides, and Sulfanes" in Ullmann's Encyclopedia of Industrial Chemistry 2000, Wiley-VCH, Weinheim. doi:10.1002/14356007.a25_443
- ^ Charles C. Price, Gardner W. Stacy "p-Aminophenyldisulfide" Org. Synth. 1948, vol. 28, 14. doi:10.15227/orgsyn.028.0014
- ^ Khazaei; et al. (2012). "synthesis of thiophenols". Synthesis Letters. 23 (13): 1893–1896. doi:10.1055/s-0032-1316557. S2CID 196805424.
- ^ Yu; et al. (2006). "Syntheses of functionalized azobenzenes". Tetrahedron. 62 (44): 10303–10310. doi:10.1016/j.tet.2006.08.069.
- ^ Zinin, N. (1842). "Beschreibung einiger neuer organischer Basen, dargestellt durch die Einwirkung des Schwefelwasserstoffes auf Verbindungen der Kohlenwasserstoffe mit Untersalpetersäure" [Description of some new organic bases, represented by the action of hydrogen sulphide on hydrocarbons with sub-nitric acid]. Journal für Praktische Chemie (in German). 27 (1): 140–153. doi:10.1002/prac.18420270125.
- ^ Hartman, W. W.; Silloway, H. L. (1945). "2-Amino-4-nitrophenol". Organic Syntheses. 25: 5. doi:10.15227/orgsyn.025.0005
{{cite journal}}
: CS1 maint: multiple names: authors list (link). - ^ Savateev, A.; Dontsova, D.; Kurpil, B.; Antonietti, M. (June 2017). "Highly crystalline poly(heptazine imides) by mechanochemical synthesis for photooxidation of various organic substrates using an intriguing electron acceptor – Elemental sulfur". Journal of Catalysis. 350: 203–211. doi:10.1016/j.jcat.2017.02.029.