Key encapsulation mechanism

In cryptography, a key encapsulation mechanism, or KEM, is a public-key cryptosystem that allows a sender to generate a short secret key and transmit it to a receiver securely, in spite of eavesdropping and intercepting adversaries.[1][2][3] Modern standards for public-key encryption of arbitrary messages are usually based on KEMs.[4][5]

Flow diagram of a key encapsulation mechanism, relating the inputs and outputs of the Gen, Encap, and Decap algorithms of a KEM
A key encapsulation mechanism, to securely transport a secret key from a sender to a receiver, consists of three algorithms: Gen, Encap, and Decap. Circles shaded blue—the receiver's public key and the encapsulation —can be safely revealed to an adversary, while boxes shaded red—the receiver's private key and the encapsulated secret key —must be kept secret.

A KEM allows a sender who knows a public key to simultaneously generate a short random secret key and an encapsulation or ciphertext of the secret key by the KEM's encapsulation algorithm. The receiver who knows the private key corresponding to the public key can recover the same random secret key from the encapsulation by the KEM's decapsulation algorithm.[1][2][3]

The security goal of a KEM is to prevent anyone who doesn't know the private key from recovering any information about the encapsulated secret keys, even after eavesdropping or submitting other encapsulations to the receiver to study how the receiver reacts.[1][2][3]

Difference from public-key encryption

edit
 
A public-key encryption scheme.

The difference between a public-key encryption scheme and a KEM is that a public-key encryption scheme allows a sender to choose an arbitrary message from some space of possible messages, while a KEM chooses a short secret key at random for the sender.[1][2][3]

The sender may take the random secret key produced by a KEM and use it as a symmetric key for an authenticated cipher whose ciphertext is sent alongside the encapsulation to the receiver. This serves to compose a public-key encryption scheme out of a KEM and a symmetric-key authenticated cipher in a hybrid cryptosystem.[1][2][3][5]

Most public-key encryption schemes such as RSAES-PKCS1-v1_5, RSAES-OAEP, and Elgamal encryption are limited to small messages[6][7] and are almost always used to encrypt a short random secret key in a hybrid cryptosystem anyway.[8][9][5] And although a public-key encryption scheme can conversely be converted to a KEM by choosing a random secret key and encrypting it as a message, it is easier to design and analyze a secure KEM than to design a secure public-key encryption scheme as a basis. So most modern public-key encryption schemes are based on KEMs rather than the other way around.[10][5]

Definition

edit

Syntax

edit

A KEM consists of three algorithms:[1][2][3][11][12]

  1. Key generation,  , takes no inputs and returns a pair of a public key   and a private key  .
  2. Encapsulation,  , takes a public key  , randomly chooses a secret key  , and returns   along with its encapsulation  .
  3. Decapsulation,  , takes a private key   and an encapsulation  , and either returns an encapsulated secret key   or fails, sometimes denoted by returning   (called ‘bottom’).

Correctness

edit

A KEM is correct if, for any key pair   generated by  , decapsulating an encapsulation   returned by   with high probability yields the same key  , that is,  .[2][3][11][12]

Security: IND-CCA

edit

Security of a KEM is quantified by its indistinguishability against chosen-ciphertext attack, IND-CCA, which is loosely how much better an adversary can do than a coin toss to tell whether, given a random key and an encapsulation, the key is encapsulated by that encapsulation or is an independent random key.[2][3][11][12]

Specifically, in the IND-CCA game:

  1. The key generation algorithm is run to generate  .
  2.   is revealed to the adversary.
  3. The adversary can query   for arbitrary encapsulations   of the adversary's choice.
  4. The encapsulation algorithm is run to randomly generate a secret key and encapsulation  , and another secret key   is generated independently at random.
  5. A fair coin is tossed, giving an outcome  .
  6. The pair   is revealed to the adversary.
  7. The adversary can again query   for arbitrary encapsulations   of the adversary's choice, except for  .
  8. The adversary returns a guess  , and wins the game if  .

The IND-CCA advantage of the adversary is  , that is, the probability beyond a fair coin toss at correctly distinguishing an encapsulated key from an independently randomly chosen key.

Examples and motivation

edit

Traditional RSA encryption, with  -bit moduli and exponent  , is defined as follows:[13][14][15]

  • Key generation,  :
  1. Generate a  -bit semiprime   with   at random satisfying  , where   is the Carmichael function.
  2. Compute  .
  3. Return   as the public key and   as the private key. (Many variations on key generation algorithms and private key formats are available.[16])
  • Encryption of  -bit message   to public key  , giving  :
  1. Encode the bit string   as an integer   with  .
  2. Return  .
  • Decryption of ciphertext   with private key  , giving  :
  1. Compute  .
  2. Decode the integer   as a bit string  .

This naive approach is totally insecure. For example, since it is nonrandomized, it cannot be secure against even known-plaintext attack—an adversary can tell whether the sender is sending the message ATTACK AT DAWN versus the message ATTACK AT DUSK simply by encrypting those messages and comparing the ciphertext.

Even if   is always a random secret key, such as a 256-bit AES key, when   is chosen to optimize efficiency as  , the message   can be computed from the ciphertext   simply by taking real number cube roots, and there are many other attacks against plain RSA.[13][14] Various randomized padding schemes have been devised in attempts—sometimes failed, like RSAES-PKCS1-v1_5[13][17][18]—to make it secure for arbitrary short messages  .[13][14]

Since the message   is almost always a short secret key for a symmetric-key authenticated cipher used to encrypt an arbitrary bit string message, a simpler approach called RSA-KEM is to choose an element of   at random and use that to derive a secret key using a key derivation function  , roughly as follows:[19][8]

  • Key generation: As above.
  • Encapsulation for a public key  , giving  :
  1. Choose an integer   with   uniformly at random.
  2. Return   and   as its encapsulation.
  • Decapsulation of   with private key  , giving  :
  1. Compute  .
  2. Return  .

This approach is simpler to implement, and provides a tighter reduction to the RSA problem, than padding schemes like RSAES-OAEP.[19]

Elgamal

edit

Traditional Elgamal encryption is defined over a multiplicative subgroup of the finite field   with generator   of order   as follows:[20][21]

  • Key generation,  :
  1. Choose   uniformly at random.
  2. Compute  .
  3. Return   as the private key and   as the public key.
  • Encryption of a message   to public key  , giving  :
  1. Choose   uniformly at random.
  2. Compute:  
  3. Return the ciphertext  .
  • Decryption of a ciphertext   for a private key  , giving  :
  1. Fail and return   if   or if  , i.e., if   or   is not in the subgroup generated by  .
  2. Compute  .
  3. Return  .

This meets the syntax of a public-key encryption scheme, restricted to messages in the space   (which limits it to message of a few hundred bytes for typical values of  ). By validating ciphertexts in decryption, it avoids leaking bits of the private key   through maliciously chosen ciphertexts outside the group generated by  .

However, this fails to achieve indistinguishability against chosen ciphertext attack. For example, an adversary having a ciphertext   for an unknown message   can trivially decrypt it by querying the decryption oracle for the distinct ciphertext  , yielding the related plaintext  , from which   can be recovered by  .[20]

Traditional Elgamal encryption can be adapted to the elliptic-curve setting, but it requires some way to reversibly encode messages as points on the curve, which is less trivial than encoding messages as integers mod  .[22]

Since the message   is almost always a short secret key for a symmetric-key authenticated cipher used to encrypt an arbitrary bit string message, a simpler approach is to derive the secret key from   and dispense with   and   altogether, as a KEM, using a key derivation function  :[1]

  • Key generation: As above.
  • Encapsulation for a public key  , giving  :
  1. Choose   uniformly at random.
  2. Compute  .
  3. Return   and   as its encapsulation.
  • Decapsulation of   with private key  , giving  :
  1. Fail and return   if  , i.e., if   is not in the subgroup generated by  .
  2. Compute  .
  3. Return  .

When combined with an authenticated cipher to encrypt arbitrary bit string messages, the combination is essentially the Integrated Encryption Scheme. Since this KEM only requires a one-way key derivation function to hash random elements of the group it is defined over,   in this case, and not a reversible encoding of messages, it is easy to extend to more compact and efficient elliptic curve groups for the same security, as in the ECIES, Elliptic Curve Integrated Encryption Scheme.

See also

edit

References

edit
  1. ^ a b c d e f g Galbraith, Steven (2012). "§23.1.1: The KEM/DEM paradigm". Mathematics of Public-Key Cryptography. Cambridge University Press. pp. 471–478. ISBN 978-1-107-01392-6.471-478&rft.pub=Cambridge University Press&rft.date=2012&rft.isbn=978-1-107-01392-6&rft.aulast=Galbraith&rft.aufirst=Steven&rfr_id=info:sid/en.wikipedia.org:Key encapsulation mechanism" class="Z3988">
  2. ^ a b c d e f g h Shoup, Victor (May 2000). Preneel, Bart (ed.). Using Hash Functions as a Hedge against Chosen Ciphertext Attack. Advances in Cryptology – EUROCRYPT 2000. Lecture Notes in Computer Science. Vol. 1807. Bruges, Belgium: Springer. pp. 275–288. doi:10.1007/3-540-45539-6_19. ISBN 978-3-540-67517-4.275-288&rft.pub=Springer&rft.date=2000-05&rft_id=info:doi/10.1007/3-540-45539-6_19&rft.isbn=978-3-540-67517-4&rft.aulast=Shoup&rft.aufirst=Victor&rft_id=https://link.springer.com/chapter/10.1007/3-540-45539-6_19&rfr_id=info:sid/en.wikipedia.org:Key encapsulation mechanism" class="Z3988">
  3. ^ a b c d e f g h Cramer, Ronald; Shoup, Victor (2003). "Design and Analysis of Practical Public-Key Encryption Schemes Secure against Adaptive Chosen Ciphertext Attack". SIAM Journal on Computing. 33 (1). Society for Industrial and Applied Mathematics: 167–226. doi:10.1137/S0097539702403773.167-226&rft.date=2003&rft_id=info:doi/10.1137/S0097539702403773&rft.aulast=Cramer&rft.aufirst=Ronald&rft.au=Shoup, Victor&rft_id=https://epubs.siam.org/doi/10.1137/S0097539702403773&rfr_id=info:sid/en.wikipedia.org:Key encapsulation mechanism" class="Z3988">
  4. ^ FIPS 203: Module-Lattice-Based Key-Encapsulation Mechanism Standard (PDF), National Institute of Standards and Technology, 2024-08-13, doi:10.6028/NIST.FIPS.203
  5. ^ a b c d Barnes, R.; Bhargavan, K.; Lipp, B.; Wood, C. (February 2022). Hybrid Public Key Encryption. Internet Engineering Task Force. doi:10.17487/RFC9180. RFC 9180.
  6. ^ Kaliski, B.; Jonsson, J.; Rusch, A. (November 2016). Moriarity, K. (ed.). PKCS #1: RSA Cryptography Specifications Version 2.2. Internet Engineering Task Force. doi:10.17487/RFC8017. RFC 8017.
  7. ^ Menezes, Alfred J.; van Oorschot, Paul C.; Vanstone, Scott A. (October 1996). "8. Public-Key Encryption". Handbook of Applied Cryptography (PDF). CRC Press. pp. 283–319. ISBN 0-8493-8523-7.283-319&rft.pub=CRC Press&rft.date=1996-10&rft.isbn=0-8493-8523-7&rft.aulast=Menezes&rft.aufirst=Alfred J.&rft.au=van Oorschot, Paul C.&rft.au=Vanstone, Scott A.&rft_id=http://cacr.uwaterloo.ca/hac/about/chap8.pdf#page=2&rfr_id=info:sid/en.wikipedia.org:Key encapsulation mechanism" class="Z3988">
  8. ^ a b Ferguson, Niels; Kohno, Tadayoshi; Schneier, Bruce (2010). "12. RSA". Cryptography Engineering. Wiley. pp. 195–211. ISBN 978-0-470-47424-2.195-211&rft.pub=Wiley&rft.date=2010&rft.isbn=978-0-470-47424-2&rft.aulast=Ferguson&rft.aufirst=Niels&rft.au=Kohno, Tadayoshi&rft.au=Schneier, Bruce&rfr_id=info:sid/en.wikipedia.org:Key encapsulation mechanism" class="Z3988">
  9. ^ Callas, J.; Donnerhacke, L.; Finney, H.; Shaw, D.; Thayer, R. (November 2007). OpenPGP Message Format. Internet Engineering Task Force. doi:10.17487/RFC4880. RFC 4880.
  10. ^ "Post-Quantum Cryptography: FAQs". National Institute of Standards and Technology. 2024-07-19. Archived from the original on 2024-06-26. Retrieved 2024-07-20.
  11. ^ a b c Dent, Alexander W. (2002), A Designer’s Guide to KEMs, Cryptology ePrint Archive, International Association for Cryptologic Research
  12. ^ a b c Hofheinz, Dennis; Hövelmanns, Kathrin; Kiltz, Eike (November 2017). Kalai, Yael; Reyzin, Leonid (eds.). A Modular Analysis of the Fujisaki-Okamoto Transformation. Theory of Cryptography – TCC 2017. Lecture Notes in Computer Science. Vol. 10677. Baltimore, MD, United States: Springer. pp. 341–371. doi:10.1007/978-3-319-70500-2_12. ISBN 978-3-319-70499-9.341-371&rft.pub=Springer&rft.date=2017-11&rft_id=info:doi/10.1007/978-3-319-70500-2_12&rft.isbn=978-3-319-70499-9&rft.aulast=Hofheinz&rft.aufirst=Dennis&rft.au=Hövelmanns, Kathrin&rft.au=Kiltz, Eike&rft_id=https://link.springer.com/chapter/10.1007/978-3-319-70500-2_12&rfr_id=info:sid/en.wikipedia.org:Key encapsulation mechanism" class="Z3988">
  13. ^ a b c d Aumasson, Jean-Philippe (2018). "10. RSA". Serious Cryptography: A Practical Introduction to Modern Encryption. No Starch Press. pp. 181–199. ISBN 978-1-59327-826-7.181-199&rft.pub=No Starch Press&rft.date=2018&rft.isbn=978-1-59327-826-7&rft.aulast=Aumasson&rft.aufirst=Jean-Philippe&rfr_id=info:sid/en.wikipedia.org:Key encapsulation mechanism" class="Z3988">
  14. ^ a b c Stinson, Douglas R. (2006). "5. The RSA Cryptosystem and Factoring Integers". Cryptography Theory and Practice (3rd ed.). Chapman & Hall/CRC. pp. 161–232. ISBN 978-1-58488-508-5.161-232&rft.edition=3rd&rft.pub=Chapman & Hall/CRC&rft.date=2006&rft.isbn=978-1-58488-508-5&rft.aulast=Stinson&rft.aufirst=Douglas R.&rfr_id=info:sid/en.wikipedia.org:Key encapsulation mechanism" class="Z3988">
  15. ^ Rivest, R.L.; Shamir, A.; Adleman, L. (1978-02-01). "A method for obtaining digital signatures and public-key cryptosystems" (PDF). Communications of the ACM. 21 (2). Association for Computer Machinery: 120–126. doi:10.1145/359340.359342.120-126&rft.date=1978-02-01&rft_id=info:doi/10.1145/359340.359342&rft.aulast=Rivest&rft.aufirst=R.L.&rft.au=Shamir, A.&rft.au=Adleman, L.&rft_id=https://people.csail.mit.edu/rivest/Rsapaper.pdf&rfr_id=info:sid/en.wikipedia.org:Key encapsulation mechanism" class="Z3988">
  16. ^ Švenda, Petr; Nemec, Matúš; Sekan, Peter; Kvašňovský, Rudolf; Formánek, David; Komárek, David; Matyáš, Vashek (August 2016). The Million-Key Question—Investigating the Origins of RSA Public Keys. 25th USENIX Security Symposium. Austin, TX, United States: USENIX Association. pp. 893–910. ISBN 978-1-931971-32-4.893-910&rft.pub=USENIX Association&rft.date=2016-08&rft.isbn=978-1-931971-32-4&rft.aulast=Švenda&rft.aufirst=Petr&rft.au=Nemec, Matúš&rft.au=Sekan, Peter&rft.au=Kvašňovský, Rudolf&rft.au=Formánek, David&rft.au=Komárek, David&rft.au=Matyáš, Vashek&rft_id=https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/svenda&rfr_id=info:sid/en.wikipedia.org:Key encapsulation mechanism" class="Z3988">
  17. ^ Bleichenbacher, Daniel (August 1998). Krawczyk, Hugo (ed.). Chosen ciphertext attacks against protocols based on the RSA encryption standard PKCS #1. Advances in Cryptology – CRYPTO '98. Lecture Notes in Computer Science. Vol. 1462. Santa Barbara, CA, United States: Springer. pp. 1–12. doi:10.1007/BFb0055716. ISBN 978-3-540-64892-5.1-12&rft.pub=Springer&rft.date=1998-08&rft_id=info:doi/10.1007/BFb0055716&rft.isbn=978-3-540-64892-5&rft.aulast=Bleichenbacher&rft.aufirst=Daniel&rft_id=https://link.springer.com/chapter/10.1007/BFb0055716&rfr_id=info:sid/en.wikipedia.org:Key encapsulation mechanism" class="Z3988">
  18. ^ Coron, Jean-Sébastien; Joye, Marc; Naccache, David; Paillier, Pascal (May 2000). Preneel, Bart (ed.). New Attacks on PKCS#1 v1.5 Encryption. Advances in Cryptology – EUROCRYPT 2000. Lecture Notes in Computer Science. Vol. 1807. Bruges, Belgium: Springer. pp. 369–381. doi:10.1007/3-540-45539-6_25. ISBN 978-3-540-67517-4.369-381&rft.pub=Springer&rft.date=2000-05&rft_id=info:doi/10.1007/3-540-45539-6_25&rft.isbn=978-3-540-67517-4&rft.aulast=Coron&rft.aufirst=Jean-Sébastien&rft.au=Joye, Marc&rft.au=Naccache, David&rft.au=Paillier, Pascal&rft_id=https://link.springer.com/chapter/10.1007/3-540-45539-6_25&rfr_id=info:sid/en.wikipedia.org:Key encapsulation mechanism" class="Z3988">
  19. ^ a b Shoup, Victor (2001), A Proposal for an ISO Standard for Public Key Encryption (version 2.1), Cryptology ePrint Archive, International Association for Cryptologic Research
  20. ^ a b Galbraith, Steven (2012). "§20.3: Textbook Elgamal encryption". Mathematics of Public-Key Cryptography. Cambridge University Press. pp. 471–478. ISBN 978-1-107-01392-6.471-478&rft.pub=Cambridge University Press&rft.date=2012&rft.isbn=978-1-107-01392-6&rft.aulast=Galbraith&rft.aufirst=Steven&rfr_id=info:sid/en.wikipedia.org:Key encapsulation mechanism" class="Z3988">
  21. ^ Elgamal, Taher (August 1984). Blakley, George Robert; Chaum, David (eds.). A Public Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms. Advances in Cryptology – CRYPTO 1984. Lecture Notes in Computer Science. Vol. 196. Santa Barbara, CA, United States: Springer. pp. 10–18. doi:10.1007/3-540-39568-7_2. ISBN 978-3-540-15658-1.10-18&rft.pub=Springer&rft.date=1984-08&rft_id=info:doi/10.1007/3-540-39568-7_2&rft.isbn=978-3-540-15658-1&rft.aulast=Elgamal&rft.aufirst=Taher&rft_id=https://link.springer.com/chapter/10.1007/3-540-39568-7_2&rfr_id=info:sid/en.wikipedia.org:Key encapsulation mechanism" class="Z3988">
  22. ^ Koblitz, Neal (January 1987). "Elliptic Curve Cryptosystems" (PDF). Mathematics of Computation. 48 (177). American Mathematical Society: 203–209. doi:10.1090/S0025-5718-1987-0866109-5.203-209&rft.date=1987-01&rft_id=info:doi/10.1090/S0025-5718-1987-0866109-5&rft.aulast=Koblitz&rft.aufirst=Neal&rft_id=https://www.ams.org/journals/mcom/1987-48-177/S0025-5718-1987-0866109-5/S0025-5718-1987-0866109-5.pdf&rfr_id=info:sid/en.wikipedia.org:Key encapsulation mechanism" class="Z3988">