Voltage-gated potassium channels form the largest and most diversified class of ion channels and are present in both excitable and nonexcitable cells. Their main functions are associated with the regulation of the resting membrane potential and the control of the shape and frequency of action potentials. The alpha subunits are of 2 types: those that are functional by themselves and those that are electrically silent but capable of modulating the activity of specific functional alpha subunits. The Kv9.3 protein (encoded by KCNS3 gene) is not functional by itself[9] but can form functional heteromultimers with Kv2.1 (encoded by KCNB1) and Kv2.2 (encoded by KCNB2) (and possibly other members) of the Shab-related subfamily of potassium voltage-gated channel proteins.[8] Heteromeric Kv2.1/Kv9.3 channels form with fixed stoichiometry consisting of three Kv2.1 subunits and one Kv9.3 subunit.[15]
^"Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
^"Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
^Shepard AR, Rae JL (September 1999). "Electrically silent potassium channel subunits from human lens epithelium". The American Journal of Physiology. 277 (3): C412–C424. doi:10.1152/ajpcell.1999.277.3.C412. PMID10484328.
^Gutman GA, Chandy KG, Grissmer S, Lazdunski M, McKinnon D, Pardo LA, et al. (December 2005). "International Union of Pharmacology. LIII. Nomenclature and molecular relationships of voltage-gated potassium channels". Pharmacological Reviews. 57 (4): 473–508. doi:10.1124/pr.57.4.10. PMID16382104. S2CID219195192.
^ abStocker M, Kerschensteiner D (July 1998). "Cloning and tissue distribution of two new potassium channel alpha-subunits from rat brain". Biochemical and Biophysical Research Communications. 248 (3): 927–934. doi:10.1006/bbrc.1998.9072. PMID9704029.
^Fantozzi I, Platoshyn O, Wong AH, Zhang S, Remillard CV, Furtado MR, et al. (November 2006). "Bone morphogenetic protein-2 upregulates expression and function of voltage-gated K channels in human pulmonary artery smooth muscle cells". American Journal of Physiology. Lung Cellular and Molecular Physiology. 291 (5): L993-1004. doi:10.1152/ajplung.00191.2005. PMID16815889.
^Fyfe GK, Panicker S, Jones RL, Wareing M (October 2012). "Expression of an electrically silent voltage-gated potassium channel in the human placenta". Journal of Obstetrics and Gynaecology. 32 (7): 624–629. doi:10.3109/01443615.2012.709288. PMID22943705. S2CID27217929.