Europium(III) iodide is an inorganic compound containing europium and iodine with the chemical formula EuI3.[1]
Names | |
---|---|
IUPAC name
Europium(III) iodide
| |
Other names
Europium triiodide
| |
Identifiers | |
3D model (JSmol)
|
|
ChemSpider | |
ECHA InfoCard | 100.033.941 |
EC Number |
|
PubChem CID
|
|
CompTox Dashboard (EPA)
|
|
| |
| |
Properties | |
EuI 3 | |
Molar mass | 532.677 g mol−1 |
Appearance | colourless crystals[2] |
Melting point | decomposes[1] |
Structure[1][3][4] | |
BiI3 | |
octahedral | |
Related compounds | |
Other anions
|
EuF3, EuCl3, EuBr3 |
Other cations
|
SmI3, GdI3 |
Related compounds
|
EuI2 |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
|
Preparation
editEuropium metal reacts directly with iodine to form europium(III) iodide:[5]
- 2 Eu 3 I2 → 2 EuI3
Hydrated europium(III) iodide can be prepared dissolving europium(III) oxide or europium(III) carbonate in hydroiodic acid:[1][6]
- Eu2O3 6 HI 6 H2O → 2 EuI3·9H2O
Europium powder reacts with iodine in THF to form a THF adduct of europium(III) iodide:[7][8]
- 2 Eu 3 I2 7 THF → [EuI2(THF)5][EuI4(THF)2]
The adduct can be formulated more simply as EuI3(THF)3.5.
Structure
editEuropium(III) iodide adopts the bismuth(III) iodide (BiI3) crystal structure type,[3][4] with octahedral coordination of each Eu3 ion by 6 iodide ions.[1]
Reactivity
editEuropium(III) iodide is used as the starting material for two of the main ways of preparing europium(II) iodide:[9]
Reduction with hydrogen gas at 350 °C:
- 2 EuI3 H2 → 2 EuI2 2 HI
Thermal decomposition[1] at 200 °C, a disproportionation reaction:
- 2 EuI3 → 2 EuI2 2 I2
Europium(III) iodide nonahydrate, EuI3·9H2O, thermally decomposes to europium(II) iodide dihydrate, EuI2·H2O.[10]
References
edit- ^ a b c d e f g Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. pp. 1240–1241. ISBN 978-0-08-037941-8.
- ^ William M. Haynes, ed. (2014). CRC Handbook of Chemistry and Physics (95th ed.). CRC Press. p. 4-63. ISBN 978-1482208689.
- ^ a b Wells, A. F. (1984). Structural Inorganic Chemistry (5th ed.). Oxford University Press. p. 421. ISBN 978-0-19-965763-6.
- ^ a b Asprey, L. B.; Keenan, T. K.; Kruse, F. H. (1964). "Preparation and Crystal Data for Lanthanide and Actinide Triiodides". Inorg. Chem. 3 (8): 1137–1141. doi:10.1021/ic50018a015.
- ^ Holleman, A. F.; Wiberg, E. (2001). Inorganic Chemistry. San Diego: Academic Press. ISBN 0-12-352651-5.
- ^ Emel'yanov, V. I.; Kuznetsova, L. I.; Abramova, L. V.; Ezhov, A. I. (1997). "Systems Eu2O3-HI-H2O and EuI3-HI-H2O at 25°C". Zh. Neorg. Khim. 42 (8): 1394–1396.
- ^ Ortu, Fabrizio (2022). "Rare Earth Starting Materials and Methodologies for Synthetic Chemistry". Chem. Rev. 122: 6040–6116. doi:10.1021/acs.chemrev.1c00842. PMC 9007467.
- ^ Gompa, Thaige P.; Rice, Natalie T.; Russo, Dominic R.; Aguirre Quintana, Luis M.; Yik, Brandon J.; Basca, John; La Pierre, Henry S. (2019). "Diethyl ether adducts of trivalent lanthanide iodides". Dalton Trans. 48: 8030–8033. doi:10.1039/C9DT00775J.
- ^ Brauer, Georg (1975). Handbook of Preparative Inorganic Chemistry. ISBN 3-432-02328-6.
- ^ Jenden, Charles M.; Lyle, Samuel J. (1982). "A Mössbauer spectroscopic study of the lodides of europium". J. Chem. Soc., Dalton Trans. (12): 2409–2414. doi:10.1039/DT9820002409.