Diisopropylamine is a secondary amine with the chemical formula (Me2CH)2NH (Me = methyl). Diisopropylamine is a colorless liquid with an ammonia-like odor. Its lithium derivative, lithium diisopropylamide, known as LDA is a widely used reagent.

Diisopropylamine
Skeletal formula of diisopropylamine
Names
Preferred IUPAC name
N-(Propan-2-yl)propan-2-amine
Other names
Di(propan-2-yl)amine
N-Isopropylpropan-2-amine
(Diisopropyl)amine
(The name diisopropylamine is deprecated.)
Identifiers
3D model (JSmol)
605284
ChemSpider
ECHA InfoCard 100.003.235 Edit this at Wikidata
EC Number
  • 203-558-5
RTECS number
  • IM4025000
UNII
UN number 1158
  • InChI=1S/C6H15N/c1-5(2)7-6(3)4/h5-7H,1-4H3 checkY
    Key: UAOMVDZJSHZZME-UHFFFAOYSA-N checkY
  • CC(C)NC(C)C
Properties
C6H15N
Molar mass 101.193 g·mol−1
Appearance Colorless liquid
Odor Fishy, ammoniacal
Density 0.722 g mL−1
Melting point −61.00 °C; −77.80 °F; 212.15 K
Boiling point 83 to 85 °C; 181 to 185 °F; 356 to 358 K
miscible[1]
Vapor pressure 9.3 kPa (at 20°C)[2]
Acidity (pKa) 11.07 (in water) (conjugate acid)
Basicity (pKb) 3.43[2]
1.392–1.393
Thermochemistry
−173.6 to −168.4 kJ mol−1
−4.3363 to −4.3313 MJ mol−1
Hazards
GHS labelling:
GHS02: Flammable GHS05: Corrosive GHS07: Exclamation mark
Danger
H225, H302, H314, H332
P210, P280, P305 P351 P338, P310
NFPA 704 (fire diamond)
NFPA 704 four-colored diamondHealth 2: Intense or continued but not chronic exposure could cause temporary incapacitation or possible residual injury. E.g. chloroformFlammability 3: Liquids and solids that can be ignited under almost all ambient temperature conditions. Flash point between 23 and 38 °C (73 and 100 °F). E.g. gasolineInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
2
3
0
Flash point −17 °C (1 °F; 256 K)
315 °C (599 °F; 588 K)
Explosive limits 1.1–7.1%[1]
Lethal dose or concentration (LD, LC):
  • 770 mg kg−1 (oral, rat)
  • >10 g kg−1 (dermal, rabbit)
1140 ppm (rat, 2 hr)
1000 ppm (mouse, 2 hr)[3]
2207 ppm (rabbit, 2.5 hr)
2207 ppm (guinea pig, 80 min)
2207 ppm (cat, 72 min)[3]
NIOSH (US health exposure limits):
PEL (Permissible)
TWA 5 ppm (20 mg/m3) [skin][1]
REL (Recommended)
TWA 5 ppm (20 mg/m3) [skin][1]
IDLH (Immediate danger)
200 ppm[1]
Related compounds
Related amines
Related compounds
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)

Reactions and use

edit

Diisopropylamine is a common amine nucleophile in organic synthesis.[4] Because it is bulky, it is a more selective nucleophile than other similar amines, such as dimethylamine.[5]

It reacts with organolithium reagents to give lithium diisopropylamide (LDA). LDA is a strong, non-nucleophilic base[6]

The main commercial applications of diisopropylamine is as a precursor to the herbicide, diallate and triallate as well as certain sulfenamides used in the vulcanization of rubber.[7]

It is also used to prepare N,N-diisopropylethylamine (Hünig's base) by alkylation with diethyl sulfate.[8]

The bromide salt of diisopropylamine, diisopropylammonium bromide, is a room-temperature organic ferroelectric material.[9]

Preparation

edit

Diisopropylamine, which is commercially available, may be prepared by the reductive amination of acetone with ammonia using a modified copper oxide, generally copper chromite, as a catalyst:[10][11]

NH3 2 (CH3)2CO 2 H2 → C6H15N 2 H2O

Diisopropylamine can be dried by distillation from potassium hydroxide (KOH) or drying over sodium wire.[12]: 186 

Toxicity

edit

Diisopropylamine causes burns by all exposure routes. Inhalation of high concentrations of its vapor may cause symptoms like headache, dizziness, tiredness, nausea and vomiting.

References

edit
  1. ^ a b c d e NIOSH Pocket Guide to Chemical Hazards. "#0217". National Institute for Occupational Safety and Health (NIOSH).
  2. ^ a b CID 7912 from PubChem
  3. ^ a b "Diisopropylamine". Immediately Dangerous to Life or Health Concentrations (IDLH). National Institute for Occupational Safety and Health (NIOSH).
  4. ^ John E. McMurry, Jack Melton (1977). "Conversion of Nitro to Carbonyl by Ozonolysis of Nitronates: 2,5-Heptanedione". Organic Syntheses. 56: 36. doi:10.15227/orgsyn.056.0036.
  5. ^ Denmark, Scott; Ryabchuk, Pavel; Min Chi, Hyung; Matviitsuk, Anastassia (2019). "Preparation of a Diisopropylselenophosphoramide Catalyst and its Use in Enantioselective Sulfenoetherification". Organic Syntheses. 96: 400–417. doi:10.15227/orgsyn.096.0400. PMC 8439352. PMID 34526731.400-417&rft.date=2019&rft_id=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8439352#id-name=PMC&rft_id=info:pmid/34526731&rft_id=info:doi/10.15227/orgsyn.096.0400&rft.aulast=Denmark&rft.aufirst=Scott&rft.au=Ryabchuk, Pavel&rft.au=Min Chi, Hyung&rft.au=Matviitsuk, Anastassia&rft_id=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8439352&rfr_id=info:sid/en.wikipedia.org:Diisopropylamine" class="Z3988">
  6. ^ George M. Rubottom, John M. Gruber, Henrik D. Juve, Jr, , Dan A. Charleson (1986). "α-Hydroxy Ketones from the Oxidation of Enol Silyl Ethers with m-Chloroperbenzoic Acid: 6-Hydroxy- 3,5,5-trimethyl-2-cyclohexen-1-one". Organic Syntheses. 64: 118. doi:10.15227/orgsyn.064.0118.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  7. ^ Eller, Karsten; Henkes, Erhard; Rossbacher, Roland; Höke, Hartmut (15 June 2000). Amines, Aliphatic. Wiley-VCH. doi:10.1002/14356007.a02_001. ISBN 978-3527303854. OL 9052422M. {{cite encyclopedia}}: |journal= ignored (help)
  8. ^ Hünig, Siegfried; Kiessel, Max (1 April 1958). "Spezifische Protonenacceptoren als Hilfsbasen bei Alkylierungs- und Dehydrohalogenierungsreaktionen" [Specific proton acceptors as auxiliary bases in alkylation and dehydrohalogenation reactions]. Chemische Berichte (in German). 91 (2). Wiley-VCH: 380–392. doi:10.1002/cber.19580910223. ISSN 0009-2940. OCLC 889715844.380-392&rft.date=1958-04-01&rft_id=info:oclcnum/889715844&rft.issn=0009-2940&rft_id=info:doi/10.1002/cber.19580910223&rft.aulast=Hünig&rft.aufirst=Siegfried&rft.au=Kiessel, Max&rfr_id=info:sid/en.wikipedia.org:Diisopropylamine" class="Z3988">
  9. ^ Fu, Da-Wei; Cai, Hong-Ling; Liu, Yuanming; Ye, Qiong; Zhang, Wen; et al. (25 January 2013). "Diisopropylammonium Bromide Is a High-Temperature Molecular Ferroelectric Crystal". Science. 339 (6118): 425–428. Bibcode:2013Sci...339..425F. doi:10.1126/science.1229675. eISSN 1095-9203. ISSN 0036-8075. LCCN 17024346. OCLC 1644869. PMID 23349285. S2CID 12389978.425-428&rft.date=2013-01-25&rft_id=info:doi/10.1126/science.1229675&rft_id=https://api.semanticscholar.org/CorpusID:12389978#id-name=S2CID&rft.eissn=1095-9203&rft_id=info:bibcode/2013Sci...339..425F&rft_id=info:oclcnum/1644869&rft.issn=0036-8075&rft_id=info:lccn/17024346&rft_id=info:pmid/23349285&rft.aulast=Fu&rft.aufirst=Da-Wei&rft.au=Cai, Hong-Ling&rft.au=Liu, Yuanming&rft.au=Ye, Qiong&rft.au=Zhang, Wen&rft.au=Zhang, Yi&rft.au=Chen, Xue-Yuan&rft.au=Giovannetti, Gianluca&rft.au=Capone, Massimo&rft.au=Li, Jiangyu&rft.au=Xiong, Ren-Gen&rfr_id=info:sid/en.wikipedia.org:Diisopropylamine" class="Z3988">
  10. ^ Löffler, Karl (1 April 1910). "Über eine neue Bildungsweise primärer und sekundärer Amine aus Ketonen" [About a new way of forming primary and secondary amines from ketones]. Berichte der Deutschen Chemischen Gesellschaft (in German). 43 (2): 2031–2035. doi:10.1002/cber.191004302145. ISSN 0365-9496. OCLC 219854722.2031-2035&rft.date=1910-04-01&rft_id=info:oclcnum/219854722&rft.issn=0365-9496&rft_id=info:doi/10.1002/cber.191004302145&rft.aulast=Löffler&rft.aufirst=Karl&rft_id=https://zenodo.org/record/1426399&rfr_id=info:sid/en.wikipedia.org:Diisopropylamine" class="Z3988">
  11. ^ US 2686811, Willard Bull, "One-step process for preparing diisopropylamine" 
  12. ^ Armarego, W. L. F.; Perrin, D. D. (16 October 1996). Purification of Laboratory Chemicals (4th ed.). Butterworth-Heinemann. ISBN 978-0750628396. LCCN 97109714. OCLC 762966259. OL 722457M.