ATSC 3.0 is a major version of the ATSC standards for terrestrial television broadcasting created by the Advanced Television Systems Committee (ATSC).[1][2][3]
The standards are designed to offer support for newer technologies, including HEVC for video channels of up to 2160p 4K resolution at 120 frames per second, wide color gamut, high dynamic range, Dolby AC-4 and MPEG-H 3D Audio, datacasting capabilities, and more robust mobile-television support.[1][4] The capabilities have also been foreseen as a way to enable finer public alerting and targeted advertising.
The first major deployments of ATSC 3.0 occurred in South Korea in May 2017, in preparation for the 2018 Winter Olympics. In November 2017, the FCC approved the voluntary use of ATSC 3.0 (branded as "Next Gen TV" or "NextGen TV") for television broadcasting in the United States; there will not be a mandatory transition as there was from analog NTSC to ATSC, and full-power stations that convert must preserve the availability of their programming in their city of license via legacy ATSC signals. In December 2021, Jamaica adopted ATSC 3.0 for its impending transition from analog to digital television, with Television Jamaica launching ATSC 3.0 service the following month.[5]
Technical details
editBootstrap
editATSC 3.0 uses a bootstrap signal which allows a receiver to discover and identify the signals that are being transmitted.[6] The bootstrap signal has a fixed configuration that can allow for new signal types to be used in the future.[6] The bootstrap signal can also carry information to wake up a receiver so that it can receive an emergency population warning.[6]
Physical layer
editATSC 3.0 uses a highly efficient physical layer that is based on orthogonal frequency-division multiplexing (OFDM) modulation with low-density parity-check code (LDPC) FEC codes.[7] With a 6 MHz channel the bit rate can vary from 1 to 57 Mbit/s depending on the parameters that are used.[7] ATSC 3.0 is limited to 64 physical layer pipes (PLP) with a recommended 4 simultaneous PLPs per complete delivered product.[8] The multiple PLPs in a channel may have different robustness levels used for each PLP.[7] An example of how PLP can be used would be a channel that delivers HD video over a robust PLP and enhances the video to UHD with Scalable HEVC Video Coding layer over a higher bitrate PLP.[9]
Audio
editATSC 3.0 supports Dolby AC-4 and MPEG-H 3D Audio.[10][11][12]
Video
editATSC 3.0 supports three video formats: legacy SD video, interlaced HD video, and progressive video.[13] Legacy SD Video and Interlaced HD Video support frame rates up to 30 fps.[13] Legacy SD Video and Interlaced HD Video are included for compatibility with existing content and can't use HDR, HFR, or WCG.[13]
- Legacy SD video
Legacy SD video supports resolutions up to 720×480 and supports High Efficiency Video Coding (HEVC) Main 10 profile at Level 3.1 Main Tier.[13]
- Interlaced HD video
Interlaced HD video supports 1080-line interlaced video with 1,920 or 1,440 pixels per line, and supports HEVC Main 10 profile at Level 4.1 Main Tier.[13]
- Progressive video
Progressive video supports resolutions up to 3840×2160 progressive scan and supports HEVC Main 10 profile at Level 5.2 Main Tier.[13] Progressive video supports frame rates up to 120 fps and the Rec. 2020 color space.[13] Progressive video supports HDR using hybrid log–gamma (HLG) and perceptual quantizer (PQ) transfer functions.[13][14]
Security
editATSC 3.0 supports encryption of the signal to protect against intrusion and provide digital rights management (DRM). While tuner vendor Nuvyyo stated in 2017 that this was intended "to allow broadcasters to provide value-added services like on-demand and pay-per-view content on a subscription basis" via broadcast signals,[15] major U.S. broadcast groups began to encrypt their ATSC 3.0 broadcast signals in 2023.[16][17][18]
ATSC 3.0 supports digital watermarking of the audio and video signals.[19][20]
Public alerting
editA U.S.-based coalition known as the Advanced Warning and Response Network Alliance has advocated for the use of ATSC 3.0 features, including datacasting and digital network interoperability, in order to provide an emergency alert system with support for embedded rich media and finer geo-targeting.[21][22]
In November 2021, AWARN and ATSC jointly filed comments in response to questions posed about ATSC 3.0 alerting capabilities in the FCC's Further Notice of Proposed Rulemaking[23] as required by the National Defense Authorization Act for Fiscal Year 2021.[24]
Broadcast Positioning System
editA backup to GPS called Broadcast Positioning System (BPS) has been proposed as part of ATSC 3.0, to provide location services in broadcast areas in the event of GPS failure.[25]
Analog audio fallback
editUnlike ATSC 1.0, ATSC 3.0 as defined makes possible the continued use of an analog audio subcarrier in addition to the digital signal—colloquially called a "Franken FM"—by narrowing the bandwidth of the channel to 5.5 MHz wide (ATSC 1.0 requires the full 6 MHz bandwidth).[26] On June 10, 2021, the FCC granted KBKF-LD in San Jose, California, a special temporary authority (STA) to transmit an analog FM audio subcarrier at 87.75 MHz, the same frequency as what would be the audio subcarrier on an NTSC analog video signal. KBKF-LD's sister station WRME-LD was granted a similar special temporary authority shortly before the end of low-power analog television on July 13, 2021. The STA has implications for the dozens of remaining analog low-power television stations on physical channel 6, which operate as FM radio stations using that NTSC subcarrier and face a July 13 deadline to convert to digital; a digital signal is not compatible with standard FM radio nor with the American digital radio standard, HD Radio. KBKF must report any interference issues to the FCC twice during the STA's term, once at 90 days and again at 180 days.[27] The initial 90-day filings demonstrated that the shared channel space was a success.[28] The FCC has proposed as of July 2023 that those operating under STA would continue to be allowed to use the analog audio service under a grandfather clause but would disallow the addition of analog audio to any other television licenses.[29]
History
editOn March 26, 2013, the Advanced Television Systems Committee announced a call for proposals for the ATSC 3.0 physical layer which states that the plan is for the system to support video with a resolution of 3840×2160 at 60 fps (4K UHDTV).[30][31][32][33]
In February 2014, a channel-sharing trial began between Los Angeles television stations KLCS (a public television station that is a PBS member) and KJLA, a commercial ethnic broadcaster owned-and-operated by LATV, with support from the CTIA and approval of the Federal Communications Commission. The test involved multiplexing multiple HD and SD subchannels together, experimenting with both current MPEG-2 / H.262 and MPEG-4 AVC / H.264 video codecs. Ultimately, it has been decided that H.264 would not be considered for ATSC-3.0, but rather the newer MPEG-H HEVC / H.265 codec would be used instead, with OFDM instead of 8VSB for modulation, allowing for data rates of 28 Mbit/s to 36 Mbit/s or more on a single 6-MHz channel.[34][35][36][37][38][39]
In May 2015, and continuing on for six months afterward, the temporary digital transition transmitter and antenna of Cleveland, Ohio's Fox affiliate, WJW, was used by the National Association of Broadcasters to test the "Futurecast" ATSC 3.0 standard advanced by LG Corporation and GatesAir.[40] In September 2015 further tests in the Baltimore and Washington, D.C. area were announced by Sinclair Broadcast Group's Baltimore station, WBFF, which is also a Fox affiliate.[41] The Futurecast system had previously been tested in October 2014 during off-air hours through Madison, Wisconsin ABC affiliate WKOW.[42][43] Unlike ATSC 1.0/2.0's Distributed Transmission System's pseudo-single-frequency network operations, WI9XXT's two transmitters operate as a true Single-Frequency Network.[44]
Further tests began on January 6, 2016, of ATSC 3.0 with High Dynamic Range (using the Scalable HEVC video codec with HE-AAC audio) from Las Vegas independent station, KHMP-LD on UHF 18. It would later be joined in these tests by Sinclair's CW affiliate, KVCW simulcasting on a temporary test frequency (UHF 45).[45][46][47]
On January 20, 2016, a working group in South Korea led by LG Electronics and others performed the first "end-to-end" broadcast of 4K resolution programming via an ATSC 3.0 signal, using an IP transmission from the Seoul Broadcasting System's Mok-dong studio to feed a transmitter on Gwanak Mountain. The broadcaster's technical director stated that the successful test "highlights the potential for Korea's launch of terrestrial UHD TV commercial services using ATSC 3.0 in February 2017."[48][49] Following the test broadcast, South Korean broadcasters announced that they planned to launch ATSC 3.0 services in February 2017.[50]
On March 28, 2016, the bootstrap component of ATSC 3.0 (System Discovery and Signalling) was upgraded from candidate standard to finalized standard.[51]
On June 29, 2016, NBC affiliate WRAL-TV in Raleigh, North Carolina, a station known for its pioneering roles in testing the original ATSC standards, launched an experimental ATSC 3.0 channel carrying the station's programming in 1080p, as well as a 4K demo loop.[52] WRAL-EX has also carried 4K coverage of the 2016 Summer Olympics and 2018 Winter Olympics in an experimental manner.[53][54]
Countries and territories using ATSC 3.0
editSouth Korea
editOn July 27, 2016, South Korea's Ministry of Science, ICT and Future Planning officially endorsed ATSC 3.0 as the country's broadcasting standard for ultra-high-definition television.[55] On January 6, 2017, LG Electronics announced that their 2017 4K TVs sold in South Korea would include ATSC 3.0 tuners.[56]
On May 31, 2017, SBS, MBC, and KBS officially launched their full-time ATSC 3.0 services in major South Korean markets such as Seoul and Incheon. The launch had been delayed from February 2017 due to issues obtaining the required equipment.[57][58]
The transition made South Korea the first country in the world to deploy a terrestrial UHD format, and enabled 4K broadcasts of the 2018 Winter Olympics in Pyeongchang County.[59][60]
United States
editOn February 2, 2017, the Federal Communications Commission (FCC) issued a notice of proposed rulemaking (NPRM) that would allow for the deployment of ATSC 3.0 in the United States.[61] The Notice of Proposed Rulemaking seeks comments on issues such as carriage obligations, interference, public interest obligations, simulcasting, and a tuner mandate.[62] Gary Shapiro of the Consumer Technology Association (CTA) has stated that a TV tuner mandate is not necessary and that it should be market-driven and voluntary.[63] On February 24, 2017, the FCC voted unanimously to approve two portions of the NPRM, opening the door for manufacturers to begin producing ATSC 3.0 hardware.[64]
On November 14, 2017, the Pearl consortium (comprising a number of major broadcasting conglomerates, including Cox Media Group, Graham Media Group, Hearst Television, Gray Television, Nexstar Media Group, E. W. Scripps Company, and Tegna Inc.) announced that it would use Phoenix, Arizona as a test market for an ATSC 3.0 transition in 2018.[65] Two days later, the FCC voted 3–2 in favor of an order authorizing voluntary deployments of ATSC 3.0 (referred to under the branding "Next Gen TV"); stations that choose to deploy ATSC 3.0 services must continue to maintain an ATSC 1.0-compatible signal that is "substantially similar" in programming to their ATSC 3.0 signal (besides programming that leverages ATSC 3.0 features, and advertising), and covers the station's entire community of license (the FCC stated that it would expedite approval for transitions if the loss in over-the-air coverage post-transition is 5% or less). This clause will remain in effect for at least five years; permission from the FCC must be obtained before a full-power station can shut down its ATSC signal, but low-power stations are exempt from the simulcasting requirement and are allowed to flash-cut to ATSC 3.0 if they choose.[66][67]
ATSC 1.0 signals will still be subject to mandatory carriage rules for television providers during the five-year simulcasting mandate; the FCC stated that voluntary carriage of 3.0 signals by television providers would be left to the marketplace. The order does require stations to provide sufficient on-air notice about transitions to ATSC 3.0 services.[67] The FCC will not allocate a second channel to each broadcaster to enable a gradual consumer transition. Instead, it has been suggested that multiple broadcasters in each market cooperate by locating multiple degraded ATSC 1.0 services on a single transmitter. At the same time, the broadcasters would share the remaining transmitters for ATSC 3.0 transmissions. After sufficient consumer adoption, ATSC 1.0 transmissions would be abandoned, allowing stations to return to operation on their owned transmitters. It is unclear how the complications of this approach would be overcome, especially in light of spectrum reallocation in heavily populated markets.[68]
The FCC published its final rules on ATSC 3.0 to the Federal Register on February 2, 2018, and they formally took effect 30 days afterward.[69] As the transition is voluntary, the FCC will not require ATSC 3.0 tuners to be included in new televisions, and there will not be a subsidy program for the distribution of ATSC 3.0-compatible equipment.[70] American Television Alliance (ATA)—a consortium of U.S. television providers—criticized the "voluntary" transition, inconsistencies in commitments to simulcasting arrangements for compatibility, and potential downgrades in service for ATSC 1.0 viewers, as well as how these signals will factor into retransmission consent negotiations.[71] It has been suggested that ATSC 1.0 lighthouses using MPEG-4 encoding could allow for more channels to be carried on lighthouse signals and at up to 1080p resolution, while maintaining a level of backward compatibility with existing televisions and tuners. However, not all televisions and decoder boxes—particularly earlier models—support MPEG-4 video on ATSC 1.0 signals.[72][73]
As part of the ATSC 3.0 trials by Pearl, Univision's KFPH-CD in Phoenix was converted to an ATSC 3.0 station on April 9, 2018, which will be shared by Univision and several other broadcasters. Univision and Sinclair Broadcast Group were also planning a trial in Dallas, which would utilize spectrum vacated by KSTR-DT and KTXD-TV to test ATSC 3.0 transmission using a single-frequency network.[74][75] On September 26, 2019, the Consumer Technology Association (CTA) announced that it would use the certification mark "NextGen TV" (stylized "NEXTGEN TV") to promote equipment that is compliant with the ATSC 3.0 standard.[76][77] The major network affiliates in Las Vegas became the first to launch permanent ATSC 3.0 signals on May 26, 2020.[78]
Due to the nature of FCC regulatory requirements, early ATSC 3.0 "lighthouse" stations involved sharing agreements with major station ownership groups such as Nexstar, Sinclair, Scripps, and Tegna, and did not engage public television stations and independent broadcasters. For example, the Buffalo launch of ATSC 3.0 left out PBS member station WNED-TV and independent station WBBZ-TV.[79] In December 2021, Pearl TV would partner with a public television station as host for the first time, announcing a partnership with the historically black Howard University in Washington, D.C. and its PBS station WHUT-TV; the university had worked with the NAB on seminars discussing ATSC 3.0, and the university had been developing ATSC 3.0-based distance learning platforms using its datacasting functionality.[80][81]
Jamaica
editIn December 2021, the Jamaica Broadcasting Commission established that Jamaica would adopt ATSC 3.0 as part of the country's transition from analog to digital television, with the transition expected to be completed in 2023.[82] Television Jamaica concurrently joined the ATSC as its first full member from the Caribbean.[83]
On January 31, 2022, Television Jamaica launched their first ATSC 3.0 transmitter in Kingston, making Jamaica the first country in the Caribbean and the third country in the world to launch ATSC 3.0 broadcasting.[5] A second transmitter in Montego Bay was activated in July 2022.[84]
Trinidad and Tobago
editIn January 2023, the Telecommunications Authority of Trinidad and Tobago (TATT) announced that Trinidad and Tobago would adopt ATSC 3.0 as part of the nation's transition from analog to digital television, with the transition expected to be completed in 2026.[85]
Brazil
editIn January 2022, the Fórum Sistema Brasileiro TV Digital Terrestre recommended the adoption of key ATSC 3.0 technologies as part of its "TV 3.0" standards for next-generation digital terrestrial television in Brazil, which will replace the Japanese ISDB-T International standards.[86][87] Terrestrial television has a major presence in the country, with 88% of families surveyed by the Brazilian Institute of Geography and Statistics (IBGE) stating that they receive terrestrial television at home.[88] TV Globo—Brazil's largest network—announced plans to deploy TV 3.0 nationally in time for the 2026 FIFA World Cup, and has demonstrated 8K service.[88]
Legal issues
editPrivacy
editU.S. consumer advocates have noted the opportunity in which ATSC 3.0 can allow advertisers to run targeted advertising. The targeted ads would allow advertisers to track viewer ratings more directly rather than indirectly by companies such as Nielsen Media Research. The FCC is expected to defer the decision on targeted ads to be in accordance with Federal Trade Commission's guidelines on privacy.[89]
DRM
editThe ability to encrypt over-the-air signals has faced criticism for contradicting the concept of free-to-air television, and potentially hindering digital video recorders and place shifting products via restrictions imposed by broadcasters.[16][17][18]
Patent litigation
editIn October 2023, LG Electronics announced that it would no longer include ATSC 3.0 tuners in its U.S. products beginning in the 2024 model year, after the United States District Court for the Eastern District of Texas ruled that the company had violated patents owned by Constellation Design, Inc. (which is not a member of ATSC) related to non-uniform constellation (NUC) techniques used by the standard, and was ordered to pay $1.68 million in damages. The ATSC stated that the impact of the situation was "likely very limited".[90]
See also
editReferences
edit- ^ a b "Technology Group 3". Advanced Television Systems Committee. Retrieved October 11, 2016.
- ^ Watch NextGenTV website. ATSC 3.0 conformant devices are identified by the NEXTGEN TV logo, which is an unregistered trademark of the Consumer Technology Association.
- ^ Chernock, Rich. "ATSC 3.0: What Will the "Standard" Look Like?". Advanced Television Systems Committee. Retrieved October 18, 2016.
- ^ "GatesAir: Are you ready for ATSC 3.0?". GatesAir. Retrieved 8 November 2016.
- ^ a b Winslow, George (February 7, 2022). "Television Jamaica Launches NextGen TV Broadcasts". TV Tech. Future US.
- ^ a b c "ATSC Standard: System Discovery and Signaling" (PDF). Advanced Television Systems Committee. March 23, 2016. Retrieved October 18, 2016.
- ^ a b c "ATSC Standard: Physical Layer Protocol" (PDF). Advanced Television Systems Committee. December 26, 2018. Retrieved Feb 28, 2019.
- ^ "ATSC Recommended Practice: Guidelines for the Physical Layer Protocol (A/327)".
- ^ Rich Chernock. "ATSC 3.0: Where We Stand". Advanced Television Systems Committee. Retrieved October 18, 2016.
- ^ "ATSC Candidate Standard: Audio Common Elements" (PDF). Advanced Television Systems Committee. June 15, 2016. Retrieved October 11, 2016.
- ^ "ATSC Candidate Standard: AC-4 System" (PDF). Advanced Television Systems Committee. May 3, 2016. Retrieved October 11, 2016.
- ^ "ATSC Candidate Standard: MPEG-H System" (PDF). Advanced Television Systems Committee. May 3, 2016. Retrieved October 11, 2016.
- ^ a b c d e f g h "ATSC Standard: Video" (PDF). Advanced Television Systems Committee. February 14, 2019. Retrieved February 28, 2019.
- ^ Jim DeFilippis (May 27, 2016). "A New Day Dawning... HDR Delivery". TVtechnology. Retrieved October 18, 2016.
- ^ "Does Next-Gen TV spell doom for over-the-air DVR?". TechHive. Retrieved 2023-08-10.
- ^ a b "NextGen TV's DRM puts future of the over-the-air DVR in doubt". TechHive. Retrieved 2023-08-10.
- ^ a b Butts, Tom (2023-06-16). "Pearl TV Responds to Critics of 3.0 Encryption". TVTechnology. Retrieved 2023-08-10.
- ^ a b Miller, Mark (2023-02-23). "For NextGen TV, Cheaper Receivers, Bigger Markets And More HDR Are Next". TV News Check. Retrieved 2023-08-10.
- ^ "ATSC Standard: Audio Watermark Emission" (PDF). Advanced Television Systems Committee. September 19, 2016. Retrieved October 18, 2016.
- ^ "ATSC Standard: Video Watermark Emission" (PDF). Advanced Television Systems Committee. September 20, 2016. Retrieved October 18, 2016.
- ^ "AWARN Alerting: An ATSC 3.0 Business Model". TVNewsCheck.com. Retrieved 2017-12-05.
- ^ "ATSC 3.0: A New Value-Added Approach for Emergency Information". TV Technology. Retrieved 2017-12-05.
- ^ Amendment of Part 11 of the Commission's Rules Regarding the Emergency Alert System; Wireless Emergency Alerts, Report and Order and Further Notice of Proposed Rulemaking, PS Docket Nos. 15-94 & 15-91, FCC no. 21-77 (rel. June 17, 2021) ("FNPRM").
- ^ National Defense Authorization Act of 2021, Pub. L. 116-283, 134 Stat. 3388 § 9201.
- ^ Bridge, The Broadcast (2023-05-04). "BEITC Session Report - Using TV For GPS Backup In The USA - The Broadcast Bridge - Connecting IT to Broadcast". www.thebroadcastbridge.com. Retrieved 2024-04-02.
- ^ James O'Neal (February 2, 2022). "Next-Generation 'Franken FMs' on the Rise". TVTechnology.
- ^ "Re: Request for Special Temporary Authority: KBKF-LD, San Jose, CA" (correspondence from Barbara A. Kreisman, Chief, Video Division, Media Bureau), June 10, 2021 (FCC.gov)
- ^ Gary Stigall (November 5, 2021). "San Diego TV Station Broadcasting Hybrid FM-ATSC 3.0 Signal on TV Channel 6". TVTechnology.
- ^ "FCC Fact Sheet: Operation of Analog Radio Services By Digital LPTV Stations as Ancillary or Supplementary Service (FM6), Fifth Report and Order, MB Docket No. 03-185, June 29, 2023.
- ^ "Call for Proposals for ATSC-3.0 Physical Layer" (PDF). Advanced Television Systems Committee. March 26, 2013. Archived from the original (PDF) on May 9, 2013. Retrieved April 15, 2013.
- ^ "Advanced Television Systems Committee Invites Proposals for Next-Generation TV Broadcasting Technologies". Advanced Television Systems Committee. March 26, 2013. Archived from the original on April 1, 2013. Retrieved April 15, 2013.
- ^ "ATSC seeks proposals for ATSC 3.0 physical layer". Broadcast Engineering. March 27, 2013. Retrieved April 15, 2013.
- ^ Lung, Doug (March 28, 2013). "ATSC Seeks Next-Gen TV Physical Layer Proposals". TV Technology. Archived from the original on 2013-05-20. Retrieved April 15, 2013.
- ^ "LA trial finds that broadcasters can share their TV channels". Gigaom. 28 March 2014. Archived from the original on 3 July 2015. Retrieved March 29, 2014.
- ^ "Overview of the KLCS/KJLA Channel Sharing Pilot — A Technical Report" (PDF). Alan Popkin, Director of Television Engineering & Technical Operations, KLCS-TV, Los Angeles
Roger Knipp, Broadcast Engineer, KLCS-TV, Los Angeles
Eddie Hernandez, Director of Operations & Engineering, KJLA-TV. Retrieved May 21, 2014. - ^ "Michigan Radio & TV Buzzboard • View topic - FCC Wireless Spectrum Auction". mibuzzboard.com. Archived from the original on 2014-07-09.
- ^ "Archived copy" (PDF). Archived from the original (PDF) on February 26, 2015. Retrieved May 27, 2014.
{{cite web}}
: CS1 maint: archived copy as title (link) - ^ "ATSC 3.0: Next Generation Broadcast Television" (PDF). IEEE. Retrieved 6 September 2023.
- ^ Kim Luplow tvnewscheck.com [dead link ]
- ^ Jessell, Henry (April 2, 2015). "Cleveland To Be Site Of Next-Gen Test Station". TVNewsCheck. Retrieved April 2, 2015.
- ^ Miller, Mark (September 5, 2015). "ONE Media To Test Next-Gen SFN Platform". TVNewsCheck. Retrieved September 5, 2015.
- ^ Winslow, George (October 22, 2014). "Futurecast Broadcast System Tested at WKOW". Broadcasting and Cable. Retrieved October 22, 2014.
- ^ "ONE Media Field Tests Proposed ATSC 3.0 System". Archived from the original on 2016-03-06. Retrieved 2016-10-12.
- ^ "Broadcasters, Tech Companies Putting ATSC 3.0 Physical Layer Candidate Standard Technologies Through Paces". October 2015.
- ^ "Live ATSC 3.0 Broadcast During CES 2016 Delivers 4K UHD HDR to Next-Gen LG OLED 4K TVS" (Press release).
- ^ "KHMP-LD Delivers Live HDR 4KTV in ATSC 3.0 at CES | TvTechnology". Archived from the original on 2016-10-04. Retrieved 2016-10-12.
- ^ "Las Vegas, NV - HDTV".
- ^ "First End-to-End 4K IP Broadcast in Korea Marks Another Key Milestone for ATSC 3.0". atsc.org. ATSC. March 2016. Retrieved 31 August 2017.
- ^ "'World's First' Live ATSC 3.0 Broadcast". TVB Europe. Archived from the original on 26 April 2016. Retrieved 31 August 2017.
- ^ "Korea to Launch ATSC 3.0 Broadcasts in 2017". TV Technology. Archived from the original on 2017-11-21. Retrieved 2017-11-17.
- ^ "First Element of ATSC 3.0 Approved for Standard". 28 March 2016.
- ^ "WRAL Launches ATSC 3.0 Service". TVNewsCheck. Retrieved June 29, 2016.
- ^ Cain, Brooke (21 February 2018). "WRAL: ATSC 3.0 Next Generation TV delivers 4K ultra high-def". The News & Observer. Retrieved 22 February 2018.
- ^ Greeley, Paul (21 February 2018). "WRAL Shows Olympics In Next Gen TV Format". TVNewsCheck. Retrieved 22 February 2018.
- ^ Deborah D. McAdams (July 27, 2016). "Report: South Korea Adopts ATSC 3.0". TV Technology. Retrieved October 13, 2016.
- ^ Deborah D. McAdams (January 6, 2017). "CES 2017: LG Intros First ATSC 3.0 4KTVs". TV Technology. Retrieved January 11, 2017.
- ^ "South Korean Broadcasters Ready to Launch ATSC 3.0". TV Technology. Retrieved 2017-11-17.
- ^ "U.S. Counterparts Congratulate Korea on ATSC 3.0 Launch". tvtechnology.com. Archived from the original on 31 August 2017. Retrieved 31 August 2017.
- ^ Harvey, Steve (1 February 2018). "2018 A Crucial Year for ATSC 3.0". ProSoundNetwork.com. Retrieved 13 February 2018.
- ^ Carter, Jamie (4 February 2018). "The Top Tech at the 2018 Winter Olympics: 5G, VR, 4K, Bullet Time and SmartSuits". South China Morning Post. Retrieved 13 February 2018.
- ^ McAdams, Deborah D. (February 2, 2017). "FCC Proposes ATSC 3.0 Deployment". TVTechnology. Retrieved February 5, 2017.
- ^ Deborah D. McAdams (February 2, 2017). "[email protected]: OET-69, Public Interest, Yes; Tuner Edict, No". TVTechnology. Retrieved February 5, 2017.
- ^ "Proposed ATSC 3.0 Rule a Win for Consumers, but Should Exclude TV Tuner Mandate". Business Wire. February 2, 2017. Retrieved February 5, 2017.
- ^ Deborah D. McAdams, "FCC Greenlights ATSC 3.0," TV Technology, February 23, 2017, http://www.tvtechnology.com/atsc3/0031/fcc-greenlights-atsc-30/280420
- ^ "Phoenix To Serve As 'Model Market' For ATSC 3.0". TV Technology. Retrieved 2017-11-16.
- ^ "FCC Launches Next-Gen Broadcast TV Standard". Broadcasting & Cable. 16 November 2017. Retrieved 2017-11-17.
- ^ a b "FCC Authorizes Next Gen TV Broadcast Standard". Federal Communications Commission. 16 November 2017. Retrieved 2017-11-18.
- ^ Lung, Doug (July 23, 2015). "Getting Ready for ATSC 3.0". TVTechnology. Archived from the original on January 9, 2017. Retrieved January 10, 2017.
- ^ "ATSC 3.0 Rollout Can Begin Next Month". Multichannel. Retrieved 2018-02-14.
- ^ Eggerton, John (2018-03-05). "Channel Battle Rages in ATSC Rollout". Broadcasting & Cable: 31.
- ^ Butts, Tom (2017-10-27). "Pay-TV, Consumer Groups Slam ATSC 3.0 Proposal". TV Technology. Retrieved 2017-11-16.
- ^ Doug Lung (2024-09-04). "Revisiting MPEG-4 for ATSC 1.0 Lighthouse Stations". TVTechnology. Retrieved 2024-10-19.
- ^ James Careless (2014-01-13). "Broadcasters Ponder Post-MPEG-2 World". TVTechnology. Retrieved 2024-10-19.
- ^ "3.0's Potential To Be Tested In Phoenix, Dallas". TVNewsCheck. Retrieved 2018-05-11.
- ^ "Univision Switches on First ATSC 3.0 Station in Phoenix Test Market". FierceCable. 9 April 2018. Retrieved 2018-04-25.
- ^ Balderston, Michael (2019-09-26). "CTA Approves NEXTGEN TV Name, Logo". TVTechnology. Retrieved 2022-08-27.
- ^ "New NEXTGEN TV Logo Certification Test Suite Released". TVTechnology. 2022-07-01. Retrieved 2022-08-27.
- ^ Hayes, Dade (May 26, 2020). "Top Local TV Groups Upgrade to "Next-Generation" TV Technology in Las Vegas". Deadline Hollywood. Retrieved May 26, 2020.
- ^ Fybush, Scott (2021-03-22). "ATSC3 Hits Buffalo Airwaves". NorthEast Radio Watch.
- ^ "Next Gen TV comes to the nation's capital with a kickoff, innovation lab at Howard University". WUSA. December 16, 2021.
- ^ Fybush, Scott (June 28, 2021). "Washington's WHUT to play central role in partnership launching local ATSC 3.0 signals". Current. Retrieved July 10, 2021.
- ^ "Digital Television Switchover in Jamaica set to begin in 2022". The Gleaner. Gleaner Company. December 7, 2021. Retrieved January 8, 2021.
- ^ "TVJ first Caribbean broadcaster to join cutting-edge global TV organisation". The Gleaner. Gleaner Company. December 28, 2021. Retrieved January 8, 2021.
- ^ Tom Butts (2022-07-13). "TVJ Lights Up Jamaica's Second ATSC 3.0 Transmitter". TVTechnology. Retrieved 2022-08-27.
- ^ "Notice". Telecommunications Authority of Trinidad and Tobago. Retrieved 2022-01-26.
- ^ "Brazil to use ATSC 3.0 technologies for next-gen Digital TV standard". Broadband TV News. 2022-01-19. Retrieved 2023-10-05.
- ^ Mann, Colin (2022-01-19). "Brazil selects key ATSC 3.0 technologies". Advanced Television. Retrieved 2023-10-05.
- ^ a b "Brazil: FTA, pay-TV decline as streaming soars – SatNews". news.satnews.com. Retrieved 2024-09-06.
- ^ Fung, Brian (2017-11-14). "TV stations are about to track you and sell targeted ads, just like Google and Facebook". Washington Post. ISSN 0190-8286. Retrieved 2017-11-15.
- ^ Kurz, Phil (2023-10-04). "ATSC President Speaks Out On Patent Issue, NextGen TV Deployments". TVTechnology. Retrieved 2023-10-05.