Warning DuckDB's C API is internal. It is not guaranteed to be stable and can change without notice. If you would like to build an application on DuckDB, we recommend using the C API.
Installation
The DuckDB C API can be installed as part of the libduckdb
packages. Please see the installation page for details.
Basic API Usage
DuckDB implements a custom C API. This is built around the abstractions of a database instance (DuckDB
class), multiple Connection
s to the database instance and QueryResult
instances as the result of queries. The header file for the C API is duckdb.hpp
.
Startup & Shutdown
To use DuckDB, you must first initialize a DuckDB
instance using its constructor. DuckDB()
takes as parameter the database file to read and write from. The special value nullptr
can be used to create an in-memory database. Note that for an in-memory database no data is persisted to disk (i.e., all data is lost when you exit the process). The second parameter to the DuckDB
constructor is an optional DBConfig
object. In DBConfig
, you can set various database parameters, for example the read/write mode or memory limits. The DuckDB
constructor may throw exceptions, for example if the database file is not usable.
With the DuckDB
instance, you can create one or many Connection
instances using the Connection()
constructor. While connections should be thread-safe, they will be locked during querying. It is therefore recommended that each thread uses its own connection if you are in a multithreaded environment.
DuckDB db(nullptr);
Connection con(db);
Querying
Connections expose the Query()
method to send a SQL query string to DuckDB from C . Query()
fully materializes the query result as a MaterializedQueryResult
in memory before returning at which point the query result can be consumed. There is also a streaming API for queries, see further below.
// create a table
con.Query("CREATE TABLE integers (i INTEGER, j INTEGER)");
// insert three rows into the table
con.Query("INSERT INTO integers VALUES (3, 4), (5, 6), (7, NULL)");
auto result = con.Query("SELECT * FROM integers");
if (result->HasError()) {
cerr << result->GetError() << endl;
} else {
cout << result->ToString() << endl;
}
The MaterializedQueryResult
instance contains firstly two fields that indicate whether the query was successful. Query
will not throw exceptions under normal circumstances. Instead, invalid queries or other issues will lead to the success
boolean field in the query result instance to be set to false
. In this case an error message may be available in error
as a string. If successful, other fields are set: the type of statement that was just executed (e.g., StatementType::INSERT_STATEMENT
) is contained in statement_type
. The high-level (“Logical type”/“SQL type”) types of the result set columns are in types
. The names of the result columns are in the names
string vector. In case multiple result sets are returned, for example because the result set contained multiple statements, the result set can be chained using the next
field.
DuckDB also supports prepared statements in the C API with the Prepare()
method. This returns an instance of PreparedStatement
. This instance can be used to execute the prepared statement with parameters. Below is an example:
std::unique_ptr<PreparedStatement> prepare = con.Prepare("SELECT count(*) FROM a WHERE i = $1");
std::unique_ptr<QueryResult> result = prepare->Execute(12);
Warning Do not use prepared statements to insert large amounts of data into DuckDB. See the data import documentation for better options.
UDF API
The UDF API allows the definition of user-defined functions. It is exposed in duckdb:Connection
through the methods: CreateScalarFunction()
, CreateVectorizedFunction()
, and variants.
These methods created UDFs into the temporary schema (TEMP_SCHEMA
) of the owner connection that is the only one allowed to use and change them.
CreateScalarFunction
The user can code an ordinary scalar function and invoke the CreateScalarFunction()
to register and afterward use the UDF in a SELECT
statement, for instance:
bool bigger_than_four(int value) {
return value > 4;
}
connection.CreateScalarFunction<bool, int>("bigger_than_four", &bigger_than_four);
connection.Query("SELECT bigger_than_four(i) FROM (VALUES(3), (5)) tbl(i)")->Print();
The CreateScalarFunction()
methods automatically creates vectorized scalar UDFs so they are as efficient as built-in functions, we have two variants of this method interface as follows:
1.
template<typename TR, typename... Args>
void CreateScalarFunction(string name, TR (*udf_func)(Args…))
- template parameters:
- TR is the return type of the UDF function;
- Args are the arguments up to 3 for the UDF function (this method only supports until ternary functions);
- name: is the name to register the UDF function;
- udf_func: is a pointer to the UDF function.
This method automatically discovers from the template typenames the corresponding LogicalTypes:
bool
→LogicalType::BOOLEAN
int8_t
→LogicalType::TINYINT
int16_t
→LogicalType::SMALLINT
int32_t
→LogicalType::INTEGER
int64_t
→LogicalType::BIGINT
float
→LogicalType::FLOAT
double
→LogicalType::DOUBLE
string_t
→LogicalType::VARCHAR
In DuckDB some primitive types, e.g., int32_t
, are mapped to the same LogicalType
: INTEGER
, TIME
and DATE
, then for disambiguation the users can use the following overloaded method.
2.
template<typename TR, typename... Args>
void CreateScalarFunction(string name, vector<LogicalType> args, LogicalType ret_type, TR (*udf_func)(Args…))
An example of use would be:
int32_t udf_date(int32_t a) {
return a;
}
con.Query("CREATE TABLE dates (d DATE)");
con.Query("INSERT INTO dates VALUES ('1992-01-01')");
con.CreateScalarFunction<int32_t, int32_t>("udf_date", {LogicalType::DATE}, LogicalType::DATE, &udf_date);
con.Query("SELECT udf_date(d) FROM dates")->Print();
- template parameters:
- TR is the return type of the UDF function;
- Args are the arguments up to 3 for the UDF function (this method only supports until ternary functions);
- name: is the name to register the UDF function;
- args: are the LogicalType arguments that the function uses, which should match with the template Args types;
- ret_type: is the LogicalType of return of the function, which should match with the template TR type;
- udf_func: is a pointer to the UDF function.
This function checks the template types against the LogicalTypes passed as arguments and they must match as follow:
- LogicalTypeId::BOOLEAN → bool
- LogicalTypeId::TINYINT → int8_t
- LogicalTypeId::SMALLINT → int16_t
- LogicalTypeId::DATE, LogicalTypeId::TIME, LogicalTypeId::INTEGER → int32_t
- LogicalTypeId::BIGINT, LogicalTypeId::TIMESTAMP → int64_t
- LogicalTypeId::FLOAT, LogicalTypeId::DOUBLE, LogicalTypeId::DECIMAL → double
- LogicalTypeId::VARCHAR, LogicalTypeId::CHAR, LogicalTypeId::BLOB → string_t
- LogicalTypeId::VARBINARY → blob_t
CreateVectorizedFunction
The CreateVectorizedFunction()
methods register a vectorized UDF such as:
/*
* This vectorized function copies the input values to the result vector
*/
template<typename TYPE>
static void udf_vectorized(DataChunk &args, ExpressionState &state, Vector &result) {
// set the result vector type
result.vector_type = VectorType::FLAT_VECTOR;
// get a raw array from the result
auto result_data = FlatVector::GetData<TYPE>(result);
// get the solely input vector
auto &input = args.data[0];
// now get an orrified vector
VectorData vdata;
input.Orrify(args.size(), vdata);
// get a raw array from the orrified input
auto input_data = (TYPE *)vdata.data;
// handling the data
for (idx_t i = 0; i < args.size(); i ) {
auto idx = vdata.sel->get_index(i);
if ((*vdata.nullmask)[idx]) {
continue;
}
result_data[i] = input_data[idx];
}
}
con.Query("CREATE TABLE integers (i INTEGER)");
con.Query("INSERT INTO integers VALUES (1), (2), (3), (999)");
con.CreateVectorizedFunction<int, int>("udf_vectorized_int", &&udf_vectorized<int>);
con.Query("SELECT udf_vectorized_int(i) FROM integers")->Print();
The Vectorized UDF is a pointer of the type scalar_function_t:
typedef std::function<void(DataChunk &args, ExpressionState &expr, Vector &result)> scalar_function_t;
- args is a DataChunk that holds a set of input vectors for the UDF that all have the same length;
- expr is an ExpressionState that provides information to the query's expression state;
- result: is a Vector to store the result values.
There are different vector types to handle in a Vectorized UDF:
- ConstantVector;
- DictionaryVector;
- FlatVector;
- ListVector;
- StringVector;
- StructVector;
- SequenceVector.
The general API of the CreateVectorizedFunction()
method is as follows:
1.
template<typename TR, typename... Args>
void CreateVectorizedFunction(string name, scalar_function_t udf_func, LogicalType varargs = LogicalType::INVALID)
- template parameters:
- TR is the return type of the UDF function;
- Args are the arguments up to 3 for the UDF function.
- name is the name to register the UDF function;
- udf_func is a vectorized UDF function;
- varargs The type of varargs to support, or LogicalTypeId::INVALID (default value) if the function does not accept variable length arguments.
This method automatically discovers from the template typenames the corresponding LogicalTypes:
- bool → LogicalType::BOOLEAN;
- int8_t → LogicalType::TINYINT;
- int16_t → LogicalType::SMALLINT
- int32_t → LogicalType::INTEGER
- int64_t → LogicalType::BIGINT
- float → LogicalType::FLOAT
- double → LogicalType::DOUBLE
- string_t → LogicalType::VARCHAR
2.
template<typename TR, typename... Args>
void CreateVectorizedFunction(string name, vector<LogicalType> args, LogicalType ret_type, scalar_function_t udf_func, LogicalType varargs = LogicalType::INVALID)