
IRVINE: SELF ENCRYPTING DATA 1

Self Encrypting Data
David Irvine∗

MaidSafe.net, 72 Templehill, Troon, South Ayrshire, Scotland, UK. KA10 6BE.
∗david.irvine@maidsafe.net

First published September 2010. Revised June 2015.

Abstract—This paper presents a system of encryption that
requires no user intervention or passwords. The resultant data
item then has to be saved or stored somewhere as in all methods.
The encryption here is aimed at creating cipher-text (encrypted)
objects that are extremely strong and closer to perfect in terms
of reversibility, as opposed to known encryption ciphers available
today. This paper focuses on symmetric encryption, but does not
introduce a new cipher. Instead the paper describes a method
of enhancing the use of this technology to produce highly secure
data and, to do so in many situations and implementations.

Index Terms—security, freedom, privacy, encryption

CONTENTS

I Introduction 1
I-A The Issues Addressed by this Paper . . 1
I-B Conventions Used 1
I-C Symmetric Encryption 1
I-D Cryptographically Secure Hash 1

II Implementation 2
II-A Overview 2
II-B File Chunking 2
II-C Encryption Step 3
II-D Obfuscation Step 3
II-E Data Map 3

III Future works 3

IV Conclusions 3

References 4

Biographies 4
David Irvine . 4

I. INTRODUCTION

ENCRYPTION has been a goal of man since before the
times of the Romans, and Caesar Ciphers (simple replace-

ment ciphers) through Enigma machine ciphers to modern day
complex matrix manipulations are present in abundance in
computer enhanced algorithms. This paper describes a way to
use such algorithms in addition to direct encryption that clearly
shows significant improvements in our use of encryption.

A. The Issues Addressed by this Paper

The issue with today’s encryption of data is in just that;
we encrypt data, as a whole. This reduces the potential set
of possible inputs, i.e. if we are chasing somebody’s bank
balance, we may expect the output to be roughly the size of
a bank statement, and guess what? It is! Furthermore, the
security of a whole piece of data encrypted with a single
algorithm depends upon just that single algorithm not getting
broken. Almost all encryption ciphers appear to reduce in
effectiveness as we understand the mathematics better and
create more powerful computers. One may believe then, that
the answer is to encrypt bits of files. However, this would
require many passwords or algorithms; like putting more locks
on a door to make it more secure, it gives people a headache
to think that they may have to remember multiple passwords
for each file. This is unlikely to be a successful manoeuvre.

B. Conventions Used

This paper does not require all the operations listed below,
but lists these for example implementations, which are outlined
later.

Hash = Hash function such as SHA, MD5, etc. We assume
a cryptographically secure algorithm.

Enc = Symmetrical encryption such as AES, 3DES, etc.

C. Symmetric Encryption

This paper will use AES as an example to cover all symmet-
ric encryption algorithms (to some extent) and therefore will
use a key and initialisation vector and plain-text input data.
There will be no mention of MAC or similar additions to the
algorithms in the hope that the reader would not attempt to
implement a poorly stated or incorrect algorithm. The primary
role in, interestingly, not encryption, it is to produce difficult
to guess uncompress-able output. There may be alternative
methods of producing difficult to guess uncompress-able out-
put, these are not considered here.

Proposition 1. Difficult to guess and uncompress-able output
equates to random results based on random input data and
random, unrelated algorithm inputs (plain text, key and iv in
the case of modern symmetric cyphers).

D. Cryptographically Secure Hash

Fact 2. The ideal cryptographic hash function has four main
or significant properties:

1) it is easy (but not necessarily quick) to compute the hash
value for any given message

IRVINE: SELF ENCRYPTING DATA 2

2) it is infeasible to generate a message that has a given
hash

3) it is infeasible to modify a message without changing
the hash

4) it is infeasible to find two different messages with the
same hash

Conjecture 3. A cryptographically secure hash which is a one
way function will create output that has a uniform distribution
and can be computed in polynomial time. The output should
be in fact random, although can be affected by size of input.
Given a sufficiently large input the output will be random
(within limits). The size of input required is dependent on the
strength of the hash functions employed. In essence output can
be considered evenly distributed and random. The limits of this
randomness are not presented in this paper. It is assumed a
sufficiently secure algorithm acting on a significantly large
input will produce randomness that is acceptable for this
conjecture.

A hash function can be thought of as a digital fingerprint.
Just as a fingerprint of a person is supposed to be unique,
then a digital hash function is also supposedly unique. We
have all heard of two people with identical fingerprints (but
perhaps have never met any!) and in the digital world it can be
possible to get two pieces of data with the same hash result.
This is referred to as a collision and reduces the security of
the hash algorithm. The more secure the algorithm, then the
likelihood of a collision is reduced. It is very similar to taking
more points of reference on an actual fingerprint to reduce
collisions in that area of science also. This is an area where
both systems share a similarity in the increasing complexity
of measurement and recording of data points of reference.

In cryptographically secure hashing, the data is analysed
and a fixed length key called the hash of the data is produced.
Again similarly to human fingerprinting a hash cannot reveal
data just as a fingerprint cannot reveal a person (i.e. you cannot
recreate the person from the print) and you cannot recreate the
data from the hash.

Early hash algorithms such as MD4, MD5 and even early
SHA are considered broken, in the sense that they simply
allow too many collisions to occur. Hence larger descriptors
(keylengths) and more efficient algorithms are almost always
required.1

II. IMPLEMENTATION

A. Overview

1) Split into several chunks (Cn).
2) Take hash of each chunk (Hcn).
3) In case of AES or similar cypher, use [keysize] (Cn−1)

as the key, use [next bytes iv size](Cn−1) as the IV. (for
AES 0 to 32 == key and 32 to 48 == iv)

4) Create obfuscation chunk (OBFCn) by concatenating the
hashes of other chunks (Cn, [unused part of]Cn−1 and
Cn−2).

1you can see where the problem exists as the logical conclusion is a key
longer than any known piece of uncompress-able data, to ensure no collisions

5) Run encryption cypher or similar reversible method on
(Cn), to produce (Crandom).

6) Now data is considered to be randomised and of the
same length as input data.

7) OBFCn is also random output, but of a length less than
the input data.

8) Now we take OBFCn(repeated) XOR Crandom to
produce our output data.

9) Rename each with the hash of the new content and save
these hashes.

Definition 4. One Time Pad as defined by Shannon[2], [5] is
regarded as the only cryptosystem with theoretically perfect
secrecy. It posseses the following 3 items that define it:

1) Pads cannot be reused.
2) For a Shannon implementation as opposed to earlier

cyclic pads, the pad must be as long as the message
to be encrypted. i.e. a pad must be non repeating. This
is the enhancement that takes this system a step further
than the Vernam cypher[3], [4]

3) The pad must contain only random data.

Fact 5. In this paper on the NSA web site, the Ver-
nam cypher appears as theunbreakable cypher for on
line tty (teleprinter) encryption, although XOR in this
case is called modulo 2 division (simply different word-
ing for the same mathematical operation). This pa-
per is found here http://www.nsa.gov/about/_files/ cryptolo-
gic_heritage/publications/misc/tsec_kw26.pdf The title of this
paper is“Securing Record Communications: The TSEC/KW-
26”.

Conjecture 6. As the Shannon system suggests a one time use
random pad that is longer than the data to be encrypted is
required for a true one time pad. In this paper we have used
a symmetric encryption cypher (AES as example, with CFB)
to introduce what can be described as randomness to the data
itself. If this is truly random then it’s the perfect pad in it’s
own right. We have also created an Obfuscation pad, which
almost creates a pad that is usable as a OTP, however it fails
to answer 2 above, i.e. it repeats as it’s shorted than the data
to be encrypted.

Proposition 7. We propose given the above definition and
conjecture that the data itself be considered the pad and the
obfuscation chunk is now repeating data (which is allowed
by the definition of the Shannon Pad), although this is rather
large amount of repeating data, it is also repeating random
data. We propose this be considered as a form of one time
pad. Added to that we also propose the actions taken on the
data ton include randomness as well as pad randomness may
in fact take the whole concept of OTP, just a little further,
making a guess significantly more difficult.

B. File Chunking

Definition 8. fc ≡ file content; fm≡ file metadata; fh ≡H(fc)
or fh ≡ H(H(C1) + H(C2) + ...H(Cn−1)).

IRVINE: SELF ENCRYPTING DATA 3

1) Take the size of the file(f.size()) and calculate number
n of chunks2

2) Create chunks of 1MB (settable) in length and hash these
chunks.

3) Take hash of each chunk and log these hashes in a
structure, which we will refer to as a data map.

The chunks are created with fixed size to ensure the set
required to recreate the file is as almost as large as the number
of available chunks in any data store. This data map is mapped
to file metadata through fh.

C. Encryption Step

In the encryption stage, we require two separate non de-
terministic pieces of data, the encryption key (or password)
and the Initialisation Vector (IV). To ensure all data encrypts
to the same end result we determine the IV from what can be
considered non deterministic data3, that being the hash of one
of the chunks.

Definition 9. Encrypt with key and IV is shown as
Enc[key][IV](data) in the following example. It is assumed the
key and the IV for chunk n are derived from separate portions
of the hash of chunk n− 1. In the case of AES for instance
the first 32 bytes of this hash are the Key and the next 16
bytes may be presumed to be the IV. Therefore these items are
selected from random data, although the randomness can be
deterministic (if we can guess the output of an algorithm such
as AES, by guessing the input parameters, i.e. brute force) on
the case of a one way function such as a cryptographic hash
(as discussed).

Example 10. Enc[H(Cn−1)first32bytes][H(Cn−1)bytes32to48](Cn) ≡ En

D. Obfuscation Step

In the obfuscation step, we pollute each chunk with data
from other chunks.

Example 11. For En, create an identically-sized data
chunk by repeated concatenating the hash of chunk n
with the unused part of the hash of chunk n− 1 and
the hash of chunk n− 2, then trimming to size, i.e.
H(Cn) + H(Cn−1)last16bytes+ H(Cn−2) + H(Cn) + ...

This is called the XOR chunk n (Xn) and is unsurprisingly
XORed (

⊕
) with chunk n.4

Example 12. E1

⊕
X1 ≡ EX1, E2

⊕
X2 ≡ EX2, etc.

2Number of chunks is a setting and depends on implementation, you may
wish a max number of chunks, or maximum chunk size, this decision and
code is left to the reader.

3This is an area of debate as to whether this is non deterministic data, in
this case the argument is that the only way to determine the data is to have
the original data in the first place, therefore there is no need to determine
keys as it would be fruitless. This is somewhat of a philosophical debate and
likely to be the topic of a few furled eyebrows over a few drams in a few
bars for a few years to come.

4In this case we have selected XOR to represent a logical operation to
obfuscate the data, this is not restrictive in any way and may be replaced by
other obfuscation methods.

E. Data Map

In the previous sections, we described the process of self
encrypting data. However, it did leave an important question
unanswered. How do we reverse this process to retrieve the
plain-text from the cipher-text chunks? The answer is data
maps.

In the II-A steps 1, 3 & 7 we collected important data. This
data alone is enough to reverse the encryption process and
this is stored in a structure we refer to as a data map. This is
described in the following table.

fh = H(H(C1) + H(C2) + ...H(Cn−1))
5

H(C1) H(EX1)
H(C2) H(EX2)
.

H(Cn) H(EXn)
With this structure the names of all the chunks are in the

right hand column and all keys and IVs (which are derived
from the original chunk hashes) are stored in the left hand
column. The file hash in the top row identifies the data element
and acts as the unique key for this file. Reversing the process
is now obvious.

1) Retrieve the chunks listed in right hand column.
2) Create each XOR chunk again.
3) Reverse the obfuscation stage.
4) Decrypt each result.
5) Concatenate the results.

This is the complete encrypt / decrypt process for each file.

III. FUTURE WORKS

To provide effectiveness the algorithms presented in this
paper will require the addition of a secure mechanism to
protect the data map. This will be furthered in an example
of self authenticating system that will use this as entry to a
system.

In addition the information should be looked after a network
or system that is secured itself. This would require a very
secure network or perhaps even the advancement of a self-
managing, self-healing network. This will be presented in a
future paper on such a system.

IV. CONCLUSIONS

This process allows for multiple data elements to be en-
crypted in a very powerful fashion. Indeed there may be some
debate as to whether the encryption or obfuscation stages
cannot be left out (well, at least one of them). It is decided this
is not a bottleneck in such a system, as data can be processed
at speeds in excess of current networking capabilities in many
cases. This is open to further research for differing situations
though.

An important issue here is that all data is encrypted using no
user information or input. This means that if the container for
all the chunks is a single container then duplicate files will
produce the exact same chunks and the storage system can
automatically remove duplicate information. It is estimated the
savings in such a system would be greater than 95%.

Also interesting is the fact that the encryption may be seen
as a“step too far”; nevertheless it does indicate that any break

IRVINE: SELF ENCRYPTING DATA 4

in an encryption cipher will not reveal any data to an attacker.
This is a valuable and important point.

It is hoped the research in this field will continue and meas-
ures of number of chunks versus data map size, etc. would
reveal interesting scope for optimisations and improvements.

Compression has been missed out from the steps in this pa-
per and can be simply added to the process of hash/encryption
of each chunk. This further improves efficiency, particularly
with regard to improving data de-duplication results.

REFERENCES

[1] David Irvine, maidsafe: A new networking paradigm,
david.irvine@maidsafe.net

[2] Shannon, Claude (1949). "Communication Theory of Secrecy
Systems". Bell System Technical Journal 28 (4): 656–715.

[3] Gilbert S. Vernam, "Cipher Printing Telegraph Systems For
Secret Wire and Radio Telegraphic Communications", Journal
of the IEEE, Vol 55, pp109–115 (1926).

[4] Gilbert S. Vernam, "Automatic Telegraph Switching System
Plan 55-A", AIEE Transactions on Communication and Elec-
tronics, May 1958, p. 239. Also in Western Union Technical
Review Vol 12 No 2, April 1958, p. 37.

[5] C.E. Shannon, “Communication Theory of Secrecy Systems,”
Bell System Technical Journal, Vol. 28, No. 4 (October 1949),
pp. 656–715.

David Irvine is a Scottish Engineer and innovator who has spent the last
12 years researching ways to make computers function in a more efficient
manner.

He is an Inventor listed on more than 20 patent submissions and was
Designer of one of the World’s largest private networks (Saudi Aramco, over
$300M). He is an experienced Project Manager and has been involved in start
up businesses since 1995 and has provided business consultancy to corporates
and SMEs in many sectors.

He has presented technology at Google (Seattle), British Computer Society
(Christmas Lecture) and many others.

He has spent many years as a lifeboat Helmsman and is a keen sailor when
time permits.

	Introduction
	The Issues Addressed by this Paper
	Conventions Used
	Symmetric Encryption
	Cryptographically Secure Hash

	Implementation
	Overview
	File Chunking
	Encryption Step
	Obfuscation Step
	Data Map

	Future works
	Conclusions
	References
	Biographies
	David Irvine

