std/io/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 863 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1863 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2863 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244
//! Traits, helpers, and type definitions for core I/O functionality.
//!
//! The `std::io` module contains a number of common things you'll need
//! when doing input and output. The most core part of this module is
//! the [`Read`] and [`Write`] traits, which provide the
//! most general interface for reading and writing input and output.
//!
//! ## Read and Write
//!
//! Because they are traits, [`Read`] and [`Write`] are implemented by a number
//! of other types, and you can implement them for your types too. As such,
//! you'll see a few different types of I/O throughout the documentation in
//! this module: [`File`]s, [`TcpStream`]s, and sometimes even [`Vec<T>`]s. For
//! example, [`Read`] adds a [`read`][`Read::read`] method, which we can use on
//! [`File`]s:
//!
//! ```no_run
//! use std::io;
//! use std::io::prelude::*;
//! use std::fs::File;
//!
//! fn main() -> io::Result<()> {
//! let mut f = File::open("foo.txt")?;
//! let mut buffer = [0; 10];
//!
//! // read up to 10 bytes
//! let n = f.read(&mut buffer)?;
//!
//! println!("The bytes: {:?}", &buffer[..n]);
//! Ok(())
//! }
//! ```
//!
//! [`Read`] and [`Write`] are so important, implementors of the two traits have a
//! nickname: readers and writers. So you'll sometimes see 'a reader' instead
//! of 'a type that implements the [`Read`] trait'. Much easier!
//!
//! ## Seek and BufRead
//!
//! Beyond that, there are two important traits that are provided: [`Seek`]
//! and [`BufRead`]. Both of these build on top of a reader to control
//! how the reading happens. [`Seek`] lets you control where the next byte is
//! coming from:
//!
//! ```no_run
//! use std::io;
//! use std::io::prelude::*;
//! use std::io::SeekFrom;
//! use std::fs::File;
//!
//! fn main() -> io::Result<()> {
//! let mut f = File::open("foo.txt")?;
//! let mut buffer = [0; 10];
//!
//! // skip to the last 10 bytes of the file
//! f.seek(SeekFrom::End(-10))?;
//!
//! // read up to 10 bytes
//! let n = f.read(&mut buffer)?;
//!
//! println!("The bytes: {:?}", &buffer[..n]);
//! Ok(())
//! }
//! ```
//!
//! [`BufRead`] uses an internal buffer to provide a number of other ways to read, but
//! to show it off, we'll need to talk about buffers in general. Keep reading!
//!
//! ## BufReader and BufWriter
//!
//! Byte-based interfaces are unwieldy and can be inefficient, as we'd need to be
//! making near-constant calls to the operating system. To help with this,
//! `std::io` comes with two structs, [`BufReader`] and [`BufWriter`], which wrap
//! readers and writers. The wrapper uses a buffer, reducing the number of
//! calls and providing nicer methods for accessing exactly what you want.
//!
//! For example, [`BufReader`] works with the [`BufRead`] trait to add extra
//! methods to any reader:
//!
//! ```no_run
//! use std::io;
//! use std::io::prelude::*;
//! use std::io::BufReader;
//! use std::fs::File;
//!
//! fn main() -> io::Result<()> {
//! let f = File::open("foo.txt")?;
//! let mut reader = BufReader::new(f);
//! let mut buffer = String::new();
//!
//! // read a line into buffer
//! reader.read_line(&mut buffer)?;
//!
//! println!("{buffer}");
//! Ok(())
//! }
//! ```
//!
//! [`BufWriter`] doesn't add any new ways of writing; it just buffers every call
//! to [`write`][`Write::write`]:
//!
//! ```no_run
//! use std::io;
//! use std::io::prelude::*;
//! use std::io::BufWriter;
//! use std::fs::File;
//!
//! fn main() -> io::Result<()> {
//! let f = File::create("foo.txt")?;
//! {
//! let mut writer = BufWriter::new(f);
//!
//! // write a byte to the buffer
//! writer.write(&[42])?;
//!
//! } // the buffer is flushed once writer goes out of scope
//!
//! Ok(())
//! }
//! ```
//!
//! ## Standard input and output
//!
//! A very common source of input is standard input:
//!
//! ```no_run
//! use std::io;
//!
//! fn main() -> io::Result<()> {
//! let mut input = String::new();
//!
//! io::stdin().read_line(&mut input)?;
//!
//! println!("You typed: {}", input.trim());
//! Ok(())
//! }
//! ```
//!
//! Note that you cannot use the [`?` operator] in functions that do not return
//! a [`Result<T, E>`][`Result`]. Instead, you can call [`.unwrap()`]
//! or `match` on the return value to catch any possible errors:
//!
//! ```no_run
//! use std::io;
//!
//! let mut input = String::new();
//!
//! io::stdin().read_line(&mut input).unwrap();
//! ```
//!
//! And a very common source of output is standard output:
//!
//! ```no_run
//! use std::io;
//! use std::io::prelude::*;
//!
//! fn main() -> io::Result<()> {
//! io::stdout().write(&[42])?;
//! Ok(())
//! }
//! ```
//!
//! Of course, using [`io::stdout`] directly is less common than something like
//! [`println!`].
//!
//! ## Iterator types
//!
//! A large number of the structures provided by `std::io` are for various
//! ways of iterating over I/O. For example, [`Lines`] is used to split over
//! lines:
//!
//! ```no_run
//! use std::io;
//! use std::io::prelude::*;
//! use std::io::BufReader;
//! use std::fs::File;
//!
//! fn main() -> io::Result<()> {
//! let f = File::open("foo.txt")?;
//! let reader = BufReader::new(f);
//!
//! for line in reader.lines() {
//! println!("{}", line?);
//! }
//! Ok(())
//! }
//! ```
//!
//! ## Functions
//!
//! There are a number of [functions][functions-list] that offer access to various
//! features. For example, we can use three of these functions to copy everything
//! from standard input to standard output:
//!
//! ```no_run
//! use std::io;
//!
//! fn main() -> io::Result<()> {
//! io::copy(&mut io::stdin(), &mut io::stdout())?;
//! Ok(())
//! }
//! ```
//!
//! [functions-list]: #functions-1
//!
//! ## io::Result
//!
//! Last, but certainly not least, is [`io::Result`]. This type is used
//! as the return type of many `std::io` functions that can cause an error, and
//! can be returned from your own functions as well. Many of the examples in this
//! module use the [`?` operator]:
//!
//! ```
//! use std::io;
//!
//! fn read_input() -> io::Result<()> {
//! let mut input = String::new();
//!
//! io::stdin().read_line(&mut input)?;
//!
//! println!("You typed: {}", input.trim());
//!
//! Ok(())
//! }
//! ```
//!
//! The return type of `read_input()`, [`io::Result<()>`][`io::Result`], is a very
//! common type for functions which don't have a 'real' return value, but do want to
//! return errors if they happen. In this case, the only purpose of this function is
//! to read the line and print it, so we use `()`.
//!
//! ## Platform-specific behavior
//!
//! Many I/O functions throughout the standard library are documented to indicate
//! what various library or syscalls they are delegated to. This is done to help
//! applications both understand what's happening under the hood as well as investigate
//! any possibly unclear semantics. Note, however, that this is informative, not a binding
//! contract. The implementation of many of these functions are subject to change over
//! time and may call fewer or more syscalls/library functions.
//!
//! ## I/O Safety
//!
//! Rust follows an I/O safety discipline that is comparable to its memory safety discipline. This
//! means that file descriptors can be *exclusively owned*. (Here, "file descriptor" is meant to
//! subsume similar concepts that exist across a wide range of operating systems even if they might
//! use a different name, such as "handle".) An exclusively owned file descriptor is one that no
//! other code is allowed to access in any way, but the owner is allowed to access and even close
//! it any time. A type that owns its file descriptor should usually close it in its `drop`
//! function. Types like [`File`] own their file descriptor. Similarly, file descriptors
//! can be *borrowed*, granting the temporary right to perform operations on this file descriptor.
//! This indicates that the file descriptor will not be closed for the lifetime of the borrow, but
//! it does *not* imply any right to close this file descriptor, since it will likely be owned by
//! someone else.
//!
//! The platform-specific parts of the Rust standard library expose types that reflect these
//! concepts, see [`os::unix`] and [`os::windows`].
//!
//! To uphold I/O safety, it is crucial that no code acts on file descriptors it does not own or
//! borrow, and no code closes file descriptors it does not own. In other words, a safe function
//! that takes a regular integer, treats it as a file descriptor, and acts on it, is *unsound*.
//!
//! Not upholding I/O safety and acting on a file descriptor without proof of ownership can lead to
//! misbehavior and even Undefined Behavior in code that relies on ownership of its file
//! descriptors: a closed file descriptor could be re-allocated, so the original owner of that file
//! descriptor is now working on the wrong file. Some code might even rely on fully encapsulating
//! its file descriptors with no operations being performed by any other part of the program.
//!
//! Note that exclusive ownership of a file descriptor does *not* imply exclusive ownership of the
//! underlying kernel object that the file descriptor references (also called "open file description" on
//! some operating systems). File descriptors basically work like [`Arc`]: when you receive an owned
//! file descriptor, you cannot know whether there are any other file descriptors that reference the
//! same kernel object. However, when you create a new kernel object, you know that you are holding
//! the only reference to it. Just be careful not to lend it to anyone, since they can obtain a
//! clone and then you can no longer know what the reference count is! In that sense, [`OwnedFd`] is
//! like `Arc` and [`BorrowedFd<'a>`] is like `&'a Arc` (and similar for the Windows types). In
//! particular, given a `BorrowedFd<'a>`, you are not allowed to close the file descriptor -- just
//! like how, given a `&'a Arc`, you are not allowed to decrement the reference count and
//! potentially free the underlying object. There is no equivalent to `Box` for file descriptors in
//! the standard library (that would be a type that guarantees that the reference count is `1`),
//! however, it would be possible for a crate to define a type with those semantics.
//!
//! [`File`]: crate::fs::File
//! [`TcpStream`]: crate::net::TcpStream
//! [`io::stdout`]: stdout
//! [`io::Result`]: self::Result
//! [`?` operator]: ../../book/appendix-02-operators.html
//! [`Result`]: crate::result::Result
//! [`.unwrap()`]: crate::result::Result::unwrap
//! [`os::unix`]: ../os/unix/io/index.html
//! [`os::windows`]: ../os/windows/io/index.html
//! [`OwnedFd`]: ../os/fd/struct.OwnedFd.html
//! [`BorrowedFd<'a>`]: ../os/fd/struct.BorrowedFd.html
//! [`Arc`]: crate::sync::Arc
#![stable(feature = "rust1", since = "1.0.0")]
#[cfg(test)]
mod tests;
#[unstable(feature = "read_buf", issue = "78485")]
pub use core::io::{BorrowedBuf, BorrowedCursor};
use core::slice::memchr;
pub(crate) use error::const_io_error;
#[stable(feature = "bufwriter_into_parts", since = "1.56.0")]
pub use self::buffered::WriterPanicked;
#[unstable(feature = "raw_os_error_ty", issue = "107792")]
pub use self::error::RawOsError;
#[stable(feature = "is_terminal", since = "1.70.0")]
pub use self::stdio::IsTerminal;
pub(crate) use self::stdio::attempt_print_to_stderr;
#[unstable(feature = "print_internals", issue = "none")]
#[doc(hidden)]
pub use self::stdio::{_eprint, _print};
#[unstable(feature = "internal_output_capture", issue = "none")]
#[doc(no_inline, hidden)]
pub use self::stdio::{set_output_capture, try_set_output_capture};
#[stable(feature = "rust1", since = "1.0.0")]
pub use self::{
buffered::{BufReader, BufWriter, IntoInnerError, LineWriter},
copy::copy,
cursor::Cursor,
error::{Error, ErrorKind, Result},
stdio::{Stderr, StderrLock, Stdin, StdinLock, Stdout, StdoutLock, stderr, stdin, stdout},
util::{Empty, Repeat, Sink, empty, repeat, sink},
};
use crate::mem::take;
use crate::ops::{Deref, DerefMut};
use crate::{cmp, fmt, slice, str, sys};
mod buffered;
pub(crate) mod copy;
mod cursor;
mod error;
mod impls;
pub mod prelude;
mod stdio;
mod util;
const DEFAULT_BUF_SIZE: usize = crate::sys_common::io::DEFAULT_BUF_SIZE;
pub(crate) use stdio::cleanup;
struct Guard<'a> {
buf: &'a mut Vec<u8>,
len: usize,
}
impl Drop for Guard<'_> {
fn drop(&mut self) {
unsafe {
self.buf.set_len(self.len);
}
}
}
// Several `read_to_string` and `read_line` methods in the standard library will
// append data into a `String` buffer, but we need to be pretty careful when
// doing this. The implementation will just call `.as_mut_vec()` and then
// delegate to a byte-oriented reading method, but we must ensure that when
// returning we never leave `buf` in a state such that it contains invalid UTF-8
// in its bounds.
//
// To this end, we use an RAII guard (to protect against panics) which updates
// the length of the string when it is dropped. This guard initially truncates
// the string to the prior length and only after we've validated that the
// new contents are valid UTF-8 do we allow it to set a longer length.
//
// The unsafety in this function is twofold:
//
// 1. We're looking at the raw bytes of `buf`, so we take on the burden of UTF-8
// checks.
// 2. We're passing a raw buffer to the function `f`, and it is expected that
// the function only *appends* bytes to the buffer. We'll get undefined
// behavior if existing bytes are overwritten to have non-UTF-8 data.
pub(crate) unsafe fn append_to_string<F>(buf: &mut String, f: F) -> Result<usize>
where
F: FnOnce(&mut Vec<u8>) -> Result<usize>,
{
let mut g = Guard { len: buf.len(), buf: unsafe { buf.as_mut_vec() } };
let ret = f(g.buf);
// SAFETY: the caller promises to only append data to `buf`
let appended = unsafe { g.buf.get_unchecked(g.len..) };
if str::from_utf8(appended).is_err() {
ret.and_then(|_| Err(Error::INVALID_UTF8))
} else {
g.len = g.buf.len();
ret
}
}
// Here we must serve many masters with conflicting goals:
//
// - avoid allocating unless necessary
// - avoid overallocating if we know the exact size (#89165)
// - avoid passing large buffers to readers that always initialize the free capacity if they perform short reads (#23815, #23820)
// - pass large buffers to readers that do not initialize the spare capacity. this can amortize per-call overheads
// - and finally pass not-too-small and not-too-large buffers to Windows read APIs because they manage to suffer from both problems
// at the same time, i.e. small reads suffer from syscall overhead, all reads incur costs proportional to buffer size (#110650)
//
pub(crate) fn default_read_to_end<R: Read ?Sized>(
r: &mut R,
buf: &mut Vec<u8>,
size_hint: Option<usize>,
) -> Result<usize> {
let start_len = buf.len();
let start_cap = buf.capacity();
// Optionally limit the maximum bytes read on each iteration.
// This adds an arbitrary fiddle factor to allow for more data than we expect.
let mut max_read_size = size_hint
.and_then(|s| s.checked_add(1024)?.checked_next_multiple_of(DEFAULT_BUF_SIZE))
.unwrap_or(DEFAULT_BUF_SIZE);
let mut initialized = 0; // Extra initialized bytes from previous loop iteration
const PROBE_SIZE: usize = 32;
fn small_probe_read<R: Read ?Sized>(r: &mut R, buf: &mut Vec<u8>) -> Result<usize> {
let mut probe = [0u8; PROBE_SIZE];
loop {
match r.read(&mut probe) {
Ok(n) => {
// there is no way to recover from allocation failure here
// because the data has already been read.
buf.extend_from_slice(&probe[..n]);
return Ok(n);
}
Err(ref e) if e.is_interrupted() => continue,
Err(e) => return Err(e),
}
}
}
// avoid inflating empty/small vecs before we have determined that there's anything to read
if (size_hint.is_none() || size_hint == Some(0)) && buf.capacity() - buf.len() < PROBE_SIZE {
let read = small_probe_read(r, buf)?;
if read == 0 {
return Ok(0);
}
}
let mut consecutive_short_reads = 0;
loop {
if buf.len() == buf.capacity() && buf.capacity() == start_cap {
// The buffer might be an exact fit. Let's read into a probe buffer
// and see if it returns `Ok(0)`. If so, we've avoided an
// unnecessary doubling of the capacity. But if not, append the
// probe buffer to the primary buffer and let its capacity grow.
let read = small_probe_read(r, buf)?;
if read == 0 {
return Ok(buf.len() - start_len);
}
}
if buf.len() == buf.capacity() {
// buf is full, need more space
buf.try_reserve(PROBE_SIZE)?;
}
let mut spare = buf.spare_capacity_mut();
let buf_len = cmp::min(spare.len(), max_read_size);
spare = &mut spare[..buf_len];
let mut read_buf: BorrowedBuf<'_> = spare.into();
// SAFETY: These bytes were initialized but not filled in the previous loop
unsafe {
read_buf.set_init(initialized);
}
let mut cursor = read_buf.unfilled();
let result = loop {
match r.read_buf(cursor.reborrow()) {
Err(e) if e.is_interrupted() => continue,
// Do not stop now in case of error: we might have received both data
// and an error
res => break res,
}
};
let unfilled_but_initialized = cursor.init_ref().len();
let bytes_read = cursor.written();
let was_fully_initialized = read_buf.init_len() == buf_len;
// SAFETY: BorrowedBuf's invariants mean this much memory is initialized.
unsafe {
let new_len = bytes_read buf.len();
buf.set_len(new_len);
}
// Now that all data is pushed to the vector, we can fail without data loss
result?;
if bytes_read == 0 {
return Ok(buf.len() - start_len);
}
if bytes_read < buf_len {
consecutive_short_reads = 1;
} else {
consecutive_short_reads = 0;
}
// store how much was initialized but not filled
initialized = unfilled_but_initialized;
// Use heuristics to determine the max read size if no initial size hint was provided
if size_hint.is_none() {
// The reader is returning short reads but it doesn't call ensure_init().
// In that case we no longer need to restrict read sizes to avoid
// initialization costs.
// When reading from disk we usually don't get any short reads except at EOF.
// So we wait for at least 2 short reads before uncapping the read buffer;
// this helps with the Windows issue.
if !was_fully_initialized && consecutive_short_reads > 1 {
max_read_size = usize::MAX;
}
// we have passed a larger buffer than previously and the
// reader still hasn't returned a short read
if buf_len >= max_read_size && bytes_read == buf_len {
max_read_size = max_read_size.saturating_mul(2);
}
}
}
}
pub(crate) fn default_read_to_string<R: Read ?Sized>(
r: &mut R,
buf: &mut String,
size_hint: Option<usize>,
) -> Result<usize> {
// Note that we do *not* call `r.read_to_end()` here. We are passing
// `&mut Vec<u8>` (the raw contents of `buf`) into the `read_to_end`
// method to fill it up. An arbitrary implementation could overwrite the
// entire contents of the vector, not just append to it (which is what
// we are expecting).
//
// To prevent extraneously checking the UTF-8-ness of the entire buffer
// we pass it to our hardcoded `default_read_to_end` implementation which
// we know is guaranteed to only read data into the end of the buffer.
unsafe { append_to_string(buf, |b| default_read_to_end(r, b, size_hint)) }
}
pub(crate) fn default_read_vectored<F>(read: F, bufs: &mut [IoSliceMut<'_>]) -> Result<usize>
where
F: FnOnce(&mut [u8]) -> Result<usize>,
{
let buf = bufs.iter_mut().find(|b| !b.is_empty()).map_or(&mut [][..], |b| &mut **b);
read(buf)
}
pub(crate) fn default_write_vectored<F>(write: F, bufs: &[IoSlice<'_>]) -> Result<usize>
where
F: FnOnce(&[u8]) -> Result<usize>,
{
let buf = bufs.iter().find(|b| !b.is_empty()).map_or(&[][..], |b| &**b);
write(buf)
}
pub(crate) fn default_read_exact<R: Read ?Sized>(this: &mut R, mut buf: &mut [u8]) -> Result<()> {
while !buf.is_empty() {
match this.read(buf) {
Ok(0) => break,
Ok(n) => {
buf = &mut buf[n..];
}
Err(ref e) if e.is_interrupted() => {}
Err(e) => return Err(e),
}
}
if !buf.is_empty() { Err(Error::READ_EXACT_EOF) } else { Ok(()) }
}
pub(crate) fn default_read_buf<F>(read: F, mut cursor: BorrowedCursor<'_>) -> Result<()>
where
F: FnOnce(&mut [u8]) -> Result<usize>,
{
let n = read(cursor.ensure_init().init_mut())?;
cursor.advance(n);
Ok(())
}
pub(crate) fn default_read_buf_exact<R: Read ?Sized>(
this: &mut R,
mut cursor: BorrowedCursor<'_>,
) -> Result<()> {
while cursor.capacity() > 0 {
let prev_written = cursor.written();
match this.read_buf(cursor.reborrow()) {
Ok(()) => {}
Err(e) if e.is_interrupted() => continue,
Err(e) => return Err(e),
}
if cursor.written() == prev_written {
return Err(Error::READ_EXACT_EOF);
}
}
Ok(())
}
/// The `Read` trait allows for reading bytes from a source.
///
/// Implementors of the `Read` trait are called 'readers'.
///
/// Readers are defined by one required method, [`read()`]. Each call to [`read()`]
/// will attempt to pull bytes from this source into a provided buffer. A
/// number of other methods are implemented in terms of [`read()`], giving
/// implementors a number of ways to read bytes while only needing to implement
/// a single method.
///
/// Readers are intended to be composable with one another. Many implementors
/// throughout [`std::io`] take and provide types which implement the `Read`
/// trait.
///
/// Please note that each call to [`read()`] may involve a system call, and
/// therefore, using something that implements [`BufRead`], such as
/// [`BufReader`], will be more efficient.
///
/// Repeated calls to the reader use the same cursor, so for example
/// calling `read_to_end` twice on a [`File`] will only return the file's
/// contents once. It's recommended to first call `rewind()` in that case.
///
/// # Examples
///
/// [`File`]s implement `Read`:
///
/// ```no_run
/// use std::io;
/// use std::io::prelude::*;
/// use std::fs::File;
///
/// fn main() -> io::Result<()> {
/// let mut f = File::open("foo.txt")?;
/// let mut buffer = [0; 10];
///
/// // read up to 10 bytes
/// f.read(&mut buffer)?;
///
/// let mut buffer = Vec::new();
/// // read the whole file
/// f.read_to_end(&mut buffer)?;
///
/// // read into a String, so that you don't need to do the conversion.
/// let mut buffer = String::new();
/// f.read_to_string(&mut buffer)?;
///
/// // and more! See the other methods for more details.
/// Ok(())
/// }
/// ```
///
/// Read from [`&str`] because [`&[u8]`][prim@slice] implements `Read`:
///
/// ```no_run
/// # use std::io;
/// use std::io::prelude::*;
///
/// fn main() -> io::Result<()> {
/// let mut b = "This string will be read".as_bytes();
/// let mut buffer = [0; 10];
///
/// // read up to 10 bytes
/// b.read(&mut buffer)?;
///
/// // etc... it works exactly as a File does!
/// Ok(())
/// }
/// ```
///
/// [`read()`]: Read::read
/// [`&str`]: prim@str
/// [`std::io`]: self
/// [`File`]: crate::fs::File
#[stable(feature = "rust1", since = "1.0.0")]
#[doc(notable_trait)]
#[cfg_attr(not(test), rustc_diagnostic_item = "IoRead")]
pub trait Read {
/// Pull some bytes from this source into the specified buffer, returning
/// how many bytes were read.
///
/// This function does not provide any guarantees about whether it blocks
/// waiting for data, but if an object needs to block for a read and cannot,
/// it will typically signal this via an [`Err`] return value.
///
/// If the return value of this method is [`Ok(n)`], then implementations must
/// guarantee that `0 <= n <= buf.len()`. A nonzero `n` value indicates
/// that the buffer `buf` has been filled in with `n` bytes of data from this
/// source. If `n` is `0`, then it can indicate one of two scenarios:
///
/// 1. This reader has reached its "end of file" and will likely no longer
/// be able to produce bytes. Note that this does not mean that the
/// reader will *always* no longer be able to produce bytes. As an example,
/// on Linux, this method will call the `recv` syscall for a [`TcpStream`],
/// where returning zero indicates the connection was shut down correctly. While
/// for [`File`], it is possible to reach the end of file and get zero as result,
/// but if more data is appended to the file, future calls to `read` will return
/// more data.
/// 2. The buffer specified was 0 bytes in length.
///
/// It is not an error if the returned value `n` is smaller than the buffer size,
/// even when the reader is not at the end of the stream yet.
/// This may happen for example because fewer bytes are actually available right now
/// (e. g. being close to end-of-file) or because read() was interrupted by a signal.
///
/// As this trait is safe to implement, callers in unsafe code cannot rely on
/// `n <= buf.len()` for safety.
/// Extra care needs to be taken when `unsafe` functions are used to access the read bytes.
/// Callers have to ensure that no unchecked out-of-bounds accesses are possible even if
/// `n > buf.len()`.
///
/// *Implementations* of this method can make no assumptions about the contents of `buf` when
/// this function is called. It is recommended that implementations only write data to `buf`
/// instead of reading its contents.
///
/// Correspondingly, however, *callers* of this method in unsafe code must not assume
/// any guarantees about how the implementation uses `buf`. The trait is safe to implement,
/// so it is possible that the code that's supposed to write to the buffer might also read
/// from it. It is your responsibility to make sure that `buf` is initialized
/// before calling `read`. Calling `read` with an uninitialized `buf` (of the kind one
/// obtains via [`MaybeUninit<T>`]) is not safe, and can lead to undefined behavior.
///
/// [`MaybeUninit<T>`]: crate::mem::MaybeUninit
///
/// # Errors
///
/// If this function encounters any form of I/O or other error, an error
/// variant will be returned. If an error is returned then it must be
/// guaranteed that no bytes were read.
///
/// An error of the [`ErrorKind::Interrupted`] kind is non-fatal and the read
/// operation should be retried if there is nothing else to do.
///
/// # Examples
///
/// [`File`]s implement `Read`:
///
/// [`Ok(n)`]: Ok
/// [`File`]: crate::fs::File
/// [`TcpStream`]: crate::net::TcpStream
///
/// ```no_run
/// use std::io;
/// use std::io::prelude::*;
/// use std::fs::File;
///
/// fn main() -> io::Result<()> {
/// let mut f = File::open("foo.txt")?;
/// let mut buffer = [0; 10];
///
/// // read up to 10 bytes
/// let n = f.read(&mut buffer[..])?;
///
/// println!("The bytes: {:?}", &buffer[..n]);
/// Ok(())
/// }
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
fn read(&mut self, buf: &mut [u8]) -> Result<usize>;
/// Like `read`, except that it reads into a slice of buffers.
///
/// Data is copied to fill each buffer in order, with the final buffer
/// written to possibly being only partially filled. This method must
/// behave equivalently to a single call to `read` with concatenated
/// buffers.
///
/// The default implementation calls `read` with either the first nonempty
/// buffer provided, or an empty one if none exists.
#[stable(feature = "iovec", since = "1.36.0")]
fn read_vectored(&mut self, bufs: &mut [IoSliceMut<'_>]) -> Result<usize> {
default_read_vectored(|b| self.read(b), bufs)
}
/// Determines if this `Read`er has an efficient `read_vectored`
/// implementation.
///
/// If a `Read`er does not override the default `read_vectored`
/// implementation, code using it may want to avoid the method all together
/// and coalesce writes into a single buffer for higher performance.
///
/// The default implementation returns `false`.
#[unstable(feature = "can_vector", issue = "69941")]
fn is_read_vectored(&self) -> bool {
false
}
/// Reads all bytes until EOF in this source, placing them into `buf`.
///
/// All bytes read from this source will be appended to the specified buffer
/// `buf`. This function will continuously call [`read()`] to append more data to
/// `buf` until [`read()`] returns either [`Ok(0)`] or an error of
/// non-[`ErrorKind::Interrupted`] kind.
///
/// If successful, this function will return the total number of bytes read.
///
/// # Errors
///
/// If this function encounters an error of the kind
/// [`ErrorKind::Interrupted`] then the error is ignored and the operation
/// will continue.
///
/// If any other read error is encountered then this function immediately
/// returns. Any bytes which have already been read will be appended to
/// `buf`.
///
/// # Examples
///
/// [`File`]s implement `Read`:
///
/// [`read()`]: Read::read
/// [`Ok(0)`]: Ok
/// [`File`]: crate::fs::File
///
/// ```no_run
/// use std::io;
/// use std::io::prelude::*;
/// use std::fs::File;
///
/// fn main() -> io::Result<()> {
/// let mut f = File::open("foo.txt")?;
/// let mut buffer = Vec::new();
///
/// // read the whole file
/// f.read_to_end(&mut buffer)?;
/// Ok(())
/// }
/// ```
///
/// (See also the [`std::fs::read`] convenience function for reading from a
/// file.)
///
/// [`std::fs::read`]: crate::fs::read
///
/// ## Implementing `read_to_end`
///
/// When implementing the `io::Read` trait, it is recommended to allocate
/// memory using [`Vec::try_reserve`]. However, this behavior is not guaranteed
/// by all implementations, and `read_to_end` may not handle out-of-memory
/// situations gracefully.
///
/// ```no_run
/// # use std::io::{self, BufRead};
/// # struct Example { example_datasource: io::Empty } impl Example {
/// # fn get_some_data_for_the_example(&self) -> &'static [u8] { &[] }
/// fn read_to_end(&mut self, dest_vec: &mut Vec<u8>) -> io::Result<usize> {
/// let initial_vec_len = dest_vec.len();
/// loop {
/// let src_buf = self.example_datasource.fill_buf()?;
/// if src_buf.is_empty() {
/// break;
/// }
/// dest_vec.try_reserve(src_buf.len())?;
/// dest_vec.extend_from_slice(src_buf);
///
/// // Any irreversible side effects should happen after `try_reserve` succeeds,
/// // to avoid losing data on allocation error.
/// let read = src_buf.len();
/// self.example_datasource.consume(read);
/// }
/// Ok(dest_vec.len() - initial_vec_len)
/// }
/// # }
/// ```
///
/// [`Vec::try_reserve`]: crate::vec::Vec::try_reserve
#[stable(feature = "rust1", since = "1.0.0")]
fn read_to_end(&mut self, buf: &mut Vec<u8>) -> Result<usize> {
default_read_to_end(self, buf, None)
}
/// Reads all bytes until EOF in this source, appending them to `buf`.
///
/// If successful, this function returns the number of bytes which were read
/// and appended to `buf`.
///
/// # Errors
///
/// If the data in this stream is *not* valid UTF-8 then an error is
/// returned and `buf` is unchanged.
///
/// See [`read_to_end`] for other error semantics.
///
/// [`read_to_end`]: Read::read_to_end
///
/// # Examples
///
/// [`File`]s implement `Read`:
///
/// [`File`]: crate::fs::File
///
/// ```no_run
/// use std::io;
/// use std::io::prelude::*;
/// use std::fs::File;
///
/// fn main() -> io::Result<()> {
/// let mut f = File::open("foo.txt")?;
/// let mut buffer = String::new();
///
/// f.read_to_string(&mut buffer)?;
/// Ok(())
/// }
/// ```
///
/// (See also the [`std::fs::read_to_string`] convenience function for
/// reading from a file.)
///
/// [`std::fs::read_to_string`]: crate::fs::read_to_string
#[stable(feature = "rust1", since = "1.0.0")]
fn read_to_string(&mut self, buf: &mut String) -> Result<usize> {
default_read_to_string(self, buf, None)
}
/// Reads the exact number of bytes required to fill `buf`.
///
/// This function reads as many bytes as necessary to completely fill the
/// specified buffer `buf`.
///
/// *Implementations* of this method can make no assumptions about the contents of `buf` when
/// this function is called. It is recommended that implementations only write data to `buf`
/// instead of reading its contents. The documentation on [`read`] has a more detailed
/// explanation of this subject.
///
/// # Errors
///
/// If this function encounters an error of the kind
/// [`ErrorKind::Interrupted`] then the error is ignored and the operation
/// will continue.
///
/// If this function encounters an "end of file" before completely filling
/// the buffer, it returns an error of the kind [`ErrorKind::UnexpectedEof`].
/// The contents of `buf` are unspecified in this case.
///
/// If any other read error is encountered then this function immediately
/// returns. The contents of `buf` are unspecified in this case.
///
/// If this function returns an error, it is unspecified how many bytes it
/// has read, but it will never read more than would be necessary to
/// completely fill the buffer.
///
/// # Examples
///
/// [`File`]s implement `Read`:
///
/// [`read`]: Read::read
/// [`File`]: crate::fs::File
///
/// ```no_run
/// use std::io;
/// use std::io::prelude::*;
/// use std::fs::File;
///
/// fn main() -> io::Result<()> {
/// let mut f = File::open("foo.txt")?;
/// let mut buffer = [0; 10];
///
/// // read exactly 10 bytes
/// f.read_exact(&mut buffer)?;
/// Ok(())
/// }
/// ```
#[stable(feature = "read_exact", since = "1.6.0")]
fn read_exact(&mut self, buf: &mut [u8]) -> Result<()> {
default_read_exact(self, buf)
}
/// Pull some bytes from this source into the specified buffer.
///
/// This is equivalent to the [`read`](Read::read) method, except that it is passed a [`BorrowedCursor`] rather than `[u8]` to allow use
/// with uninitialized buffers. The new data will be appended to any existing contents of `buf`.
///
/// The default implementation delegates to `read`.
///
/// This method makes it possible to return both data and an error but it is advised against.
#[unstable(feature = "read_buf", issue = "78485")]
fn read_buf(&mut self, buf: BorrowedCursor<'_>) -> Result<()> {
default_read_buf(|b| self.read(b), buf)
}
/// Reads the exact number of bytes required to fill `cursor`.
///
/// This is similar to the [`read_exact`](Read::read_exact) method, except
/// that it is passed a [`BorrowedCursor`] rather than `[u8]` to allow use
/// with uninitialized buffers.
///
/// # Errors
///
/// If this function encounters an error of the kind [`ErrorKind::Interrupted`]
/// then the error is ignored and the operation will continue.
///
/// If this function encounters an "end of file" before completely filling
/// the buffer, it returns an error of the kind [`ErrorKind::UnexpectedEof`].
///
/// If any other read error is encountered then this function immediately
/// returns.
///
/// If this function returns an error, all bytes read will be appended to `cursor`.
#[unstable(feature = "read_buf", issue = "78485")]
fn read_buf_exact(&mut self, cursor: BorrowedCursor<'_>) -> Result<()> {
default_read_buf_exact(self, cursor)
}
/// Creates a "by reference" adaptor for this instance of `Read`.
///
/// The returned adapter also implements `Read` and will simply borrow this
/// current reader.
///
/// # Examples
///
/// [`File`]s implement `Read`:
///
/// [`File`]: crate::fs::File
///
/// ```no_run
/// use std::io;
/// use std::io::Read;
/// use std::fs::File;
///
/// fn main() -> io::Result<()> {
/// let mut f = File::open("foo.txt")?;
/// let mut buffer = Vec::new();
/// let mut other_buffer = Vec::new();
///
/// {
/// let reference = f.by_ref();
///
/// // read at most 5 bytes
/// reference.take(5).read_to_end(&mut buffer)?;
///
/// } // drop our &mut reference so we can use f again
///
/// // original file still usable, read the rest
/// f.read_to_end(&mut other_buffer)?;
/// Ok(())
/// }
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
fn by_ref(&mut self) -> &mut Self
where
Self: Sized,
{
self
}
/// Transforms this `Read` instance to an [`Iterator`] over its bytes.
///
/// The returned type implements [`Iterator`] where the [`Item`] is
/// <code>[Result]<[u8], [io::Error]></code>.
/// The yielded item is [`Ok`] if a byte was successfully read and [`Err`]
/// otherwise. EOF is mapped to returning [`None`] from this iterator.
///
/// The default implementation calls `read` for each byte,
/// which can be very inefficient for data that's not in memory,
/// such as [`File`]. Consider using a [`BufReader`] in such cases.
///
/// # Examples
///
/// [`File`]s implement `Read`:
///
/// [`Item`]: Iterator::Item
/// [`File`]: crate::fs::File "fs::File"
/// [Result]: crate::result::Result "Result"
/// [io::Error]: self::Error "io::Error"
///
/// ```no_run
/// use std::io;
/// use std::io::prelude::*;
/// use std::io::BufReader;
/// use std::fs::File;
///
/// fn main() -> io::Result<()> {
/// let f = BufReader::new(File::open("foo.txt")?);
///
/// for byte in f.bytes() {
/// println!("{}", byte.unwrap());
/// }
/// Ok(())
/// }
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
fn bytes(self) -> Bytes<Self>
where
Self: Sized,
{
Bytes { inner: self }
}
/// Creates an adapter which will chain this stream with another.
///
/// The returned `Read` instance will first read all bytes from this object
/// until EOF is encountered. Afterwards the output is equivalent to the
/// output of `next`.
///
/// # Examples
///
/// [`File`]s implement `Read`:
///
/// [`File`]: crate::fs::File
///
/// ```no_run
/// use std::io;
/// use std::io::prelude::*;
/// use std::fs::File;
///
/// fn main() -> io::Result<()> {
/// let f1 = File::open("foo.txt")?;
/// let f2 = File::open("bar.txt")?;
///
/// let mut handle = f1.chain(f2);
/// let mut buffer = String::new();
///
/// // read the value into a String. We could use any Read method here,
/// // this is just one example.
/// handle.read_to_string(&mut buffer)?;
/// Ok(())
/// }
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
fn chain<R: Read>(self, next: R) -> Chain<Self, R>
where
Self: Sized,
{
Chain { first: self, second: next, done_first: false }
}
/// Creates an adapter which will read at most `limit` bytes from it.
///
/// This function returns a new instance of `Read` which will read at most
/// `limit` bytes, after which it will always return EOF ([`Ok(0)`]). Any
/// read errors will not count towards the number of bytes read and future
/// calls to [`read()`] may succeed.
///
/// # Examples
///
/// [`File`]s implement `Read`:
///
/// [`File`]: crate::fs::File
/// [`Ok(0)`]: Ok
/// [`read()`]: Read::read
///
/// ```no_run
/// use std::io;
/// use std::io::prelude::*;
/// use std::fs::File;
///
/// fn main() -> io::Result<()> {
/// let f = File::open("foo.txt")?;
/// let mut buffer = [0; 5];
///
/// // read at most five bytes
/// let mut handle = f.take(5);
///
/// handle.read(&mut buffer)?;
/// Ok(())
/// }
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
fn take(self, limit: u64) -> Take<Self>
where
Self: Sized,
{
Take { inner: self, limit }
}
}
/// Reads all bytes from a [reader][Read] into a new [`String`].
///
/// This is a convenience function for [`Read::read_to_string`]. Using this
/// function avoids having to create a variable first and provides more type
/// safety since you can only get the buffer out if there were no errors. (If you
/// use [`Read::read_to_string`] you have to remember to check whether the read
/// succeeded because otherwise your buffer will be empty or only partially full.)
///
/// # Performance
///
/// The downside of this function's increased ease of use and type safety is
/// that it gives you less control over performance. For example, you can't
/// pre-allocate memory like you can using [`String::with_capacity`] and
/// [`Read::read_to_string`]. Also, you can't re-use the buffer if an error
/// occurs while reading.
///
/// In many cases, this function's performance will be adequate and the ease of use
/// and type safety tradeoffs will be worth it. However, there are cases where you
/// need more control over performance, and in those cases you should definitely use
/// [`Read::read_to_string`] directly.
///
/// Note that in some special cases, such as when reading files, this function will
/// pre-allocate memory based on the size of the input it is reading. In those
/// cases, the performance should be as good as if you had used
/// [`Read::read_to_string`] with a manually pre-allocated buffer.
///
/// # Errors
///
/// This function forces you to handle errors because the output (the `String`)
/// is wrapped in a [`Result`]. See [`Read::read_to_string`] for the errors
/// that can occur. If any error occurs, you will get an [`Err`], so you
/// don't have to worry about your buffer being empty or partially full.
///
/// # Examples
///
/// ```no_run
/// # use std::io;
/// fn main() -> io::Result<()> {
/// let stdin = io::read_to_string(io::stdin())?;
/// println!("Stdin was:");
/// println!("{stdin}");
/// Ok(())
/// }
/// ```
#[stable(feature = "io_read_to_string", since = "1.65.0")]
pub fn read_to_string<R: Read>(mut reader: R) -> Result<String> {
let mut buf = String::new();
reader.read_to_string(&mut buf)?;
Ok(buf)
}
/// A buffer type used with `Read::read_vectored`.
///
/// It is semantically a wrapper around a `&mut [u8]`, but is guaranteed to be
/// ABI compatible with the `iovec` type on Unix platforms and `WSABUF` on
/// Windows.
#[stable(feature = "iovec", since = "1.36.0")]
#[repr(transparent)]
pub struct IoSliceMut<'a>(sys::io::IoSliceMut<'a>);
#[stable(feature = "iovec_send_sync", since = "1.44.0")]
unsafe impl<'a> Send for IoSliceMut<'a> {}
#[stable(feature = "iovec_send_sync", since = "1.44.0")]
unsafe impl<'a> Sync for IoSliceMut<'a> {}
#[stable(feature = "iovec", since = "1.36.0")]
impl<'a> fmt::Debug for IoSliceMut<'a> {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt::Debug::fmt(self.0.as_slice(), fmt)
}
}
impl<'a> IoSliceMut<'a> {
/// Creates a new `IoSliceMut` wrapping a byte slice.
///
/// # Panics
///
/// Panics on Windows if the slice is larger than 4GB.
#[stable(feature = "iovec", since = "1.36.0")]
#[inline]
pub fn new(buf: &'a mut [u8]) -> IoSliceMut<'a> {
IoSliceMut(sys::io::IoSliceMut::new(buf))
}
/// Advance the internal cursor of the slice.
///
/// Also see [`IoSliceMut::advance_slices`] to advance the cursors of
/// multiple buffers.
///
/// # Panics
///
/// Panics when trying to advance beyond the end of the slice.
///
/// # Examples
///
/// ```
/// use std::io::IoSliceMut;
/// use std::ops::Deref;
///
/// let mut data = [1; 8];
/// let mut buf = IoSliceMut::new(&mut data);
///
/// // Mark 3 bytes as read.
/// buf.advance(3);
/// assert_eq!(buf.deref(), [1; 5].as_ref());
/// ```
#[stable(feature = "io_slice_advance", since = "1.81.0")]
#[inline]
pub fn advance(&mut self, n: usize) {
self.0.advance(n)
}
/// Advance a slice of slices.
///
/// Shrinks the slice to remove any `IoSliceMut`s that are fully advanced over.
/// If the cursor ends up in the middle of an `IoSliceMut`, it is modified
/// to start at that cursor.
///
/// For example, if we have a slice of two 8-byte `IoSliceMut`s, and we advance by 10 bytes,
/// the result will only include the second `IoSliceMut`, advanced by 2 bytes.
///
/// # Panics
///
/// Panics when trying to advance beyond the end of the slices.
///
/// # Examples
///
/// ```
/// use std::io::IoSliceMut;
/// use std::ops::Deref;
///
/// let mut buf1 = [1; 8];
/// let mut buf2 = [2; 16];
/// let mut buf3 = [3; 8];
/// let mut bufs = &mut [
/// IoSliceMut::new(&mut buf1),
/// IoSliceMut::new(&mut buf2),
/// IoSliceMut::new(&mut buf3),
/// ][..];
///
/// // Mark 10 bytes as read.
/// IoSliceMut::advance_slices(&mut bufs, 10);
/// assert_eq!(bufs[0].deref(), [2; 14].as_ref());
/// assert_eq!(bufs[1].deref(), [3; 8].as_ref());
/// ```
#[stable(feature = "io_slice_advance", since = "1.81.0")]
#[inline]
pub fn advance_slices(bufs: &mut &mut [IoSliceMut<'a>], n: usize) {
// Number of buffers to remove.
let mut remove = 0;
// Remaining length before reaching n.
let mut left = n;
for buf in bufs.iter() {
if let Some(remainder) = left.checked_sub(buf.len()) {
left = remainder;
remove = 1;
} else {
break;
}
}
*bufs = &mut take(bufs)[remove..];
if bufs.is_empty() {
assert!(left == 0, "advancing io slices beyond their length");
} else {
bufs[0].advance(left);
}
}
/// Get the underlying bytes as a mutable slice with the original lifetime.
///
/// # Examples
///
/// ```
/// #![feature(io_slice_as_bytes)]
/// use std::io::IoSliceMut;
///
/// let mut data = *b"abcdef";
/// let io_slice = IoSliceMut::new(&mut data);
/// io_slice.into_slice()[0] = b'A';
///
/// assert_eq!(&data, b"Abcdef");
/// ```
#[unstable(feature = "io_slice_as_bytes", issue = "132818")]
pub const fn into_slice(self) -> &'a mut [u8] {
self.0.into_slice()
}
}
#[stable(feature = "iovec", since = "1.36.0")]
impl<'a> Deref for IoSliceMut<'a> {
type Target = [u8];
#[inline]
fn deref(&self) -> &[u8] {
self.0.as_slice()
}
}
#[stable(feature = "iovec", since = "1.36.0")]
impl<'a> DerefMut for IoSliceMut<'a> {
#[inline]
fn deref_mut(&mut self) -> &mut [u8] {
self.0.as_mut_slice()
}
}
/// A buffer type used with `Write::write_vectored`.
///
/// It is semantically a wrapper around a `&[u8]`, but is guaranteed to be
/// ABI compatible with the `iovec` type on Unix platforms and `WSABUF` on
/// Windows.
#[stable(feature = "iovec", since = "1.36.0")]
#[derive(Copy, Clone)]
#[repr(transparent)]
pub struct IoSlice<'a>(sys::io::IoSlice<'a>);
#[stable(feature = "iovec_send_sync", since = "1.44.0")]
unsafe impl<'a> Send for IoSlice<'a> {}
#[stable(feature = "iovec_send_sync", since = "1.44.0")]
unsafe impl<'a> Sync for IoSlice<'a> {}
#[stable(feature = "iovec", since = "1.36.0")]
impl<'a> fmt::Debug for IoSlice<'a> {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt::Debug::fmt(self.0.as_slice(), fmt)
}
}
impl<'a> IoSlice<'a> {
/// Creates a new `IoSlice` wrapping a byte slice.
///
/// # Panics
///
/// Panics on Windows if the slice is larger than 4GB.
#[stable(feature = "iovec", since = "1.36.0")]
#[must_use]
#[inline]
pub fn new(buf: &'a [u8]) -> IoSlice<'a> {
IoSlice(sys::io::IoSlice::new(buf))
}
/// Advance the internal cursor of the slice.
///
/// Also see [`IoSlice::advance_slices`] to advance the cursors of multiple
/// buffers.
///
/// # Panics
///
/// Panics when trying to advance beyond the end of the slice.
///
/// # Examples
///
/// ```
/// use std::io::IoSlice;
/// use std::ops::Deref;
///
/// let data = [1; 8];
/// let mut buf = IoSlice::new(&data);
///
/// // Mark 3 bytes as read.
/// buf.advance(3);
/// assert_eq!(buf.deref(), [1; 5].as_ref());
/// ```
#[stable(feature = "io_slice_advance", since = "1.81.0")]
#[inline]
pub fn advance(&mut self, n: usize) {
self.0.advance(n)
}
/// Advance a slice of slices.
///
/// Shrinks the slice to remove any `IoSlice`s that are fully advanced over.
/// If the cursor ends up in the middle of an `IoSlice`, it is modified
/// to start at that cursor.
///
/// For example, if we have a slice of two 8-byte `IoSlice`s, and we advance by 10 bytes,
/// the result will only include the second `IoSlice`, advanced by 2 bytes.
///
/// # Panics
///
/// Panics when trying to advance beyond the end of the slices.
///
/// # Examples
///
/// ```
/// use std::io::IoSlice;
/// use std::ops::Deref;
///
/// let buf1 = [1; 8];
/// let buf2 = [2; 16];
/// let buf3 = [3; 8];
/// let mut bufs = &mut [
/// IoSlice::new(&buf1),
/// IoSlice::new(&buf2),
/// IoSlice::new(&buf3),
/// ][..];
///
/// // Mark 10 bytes as written.
/// IoSlice::advance_slices(&mut bufs, 10);
/// assert_eq!(bufs[0].deref(), [2; 14].as_ref());
/// assert_eq!(bufs[1].deref(), [3; 8].as_ref());
#[stable(feature = "io_slice_advance", since = "1.81.0")]
#[inline]
pub fn advance_slices(bufs: &mut &mut [IoSlice<'a>], n: usize) {
// Number of buffers to remove.
let mut remove = 0;
// Remaining length before reaching n. This prevents overflow
// that could happen if the length of slices in `bufs` were instead
// accumulated. Those slice may be aliased and, if they are large
// enough, their added length may overflow a `usize`.
let mut left = n;
for buf in bufs.iter() {
if let Some(remainder) = left.checked_sub(buf.len()) {
left = remainder;
remove = 1;
} else {
break;
}
}
*bufs = &mut take(bufs)[remove..];
if bufs.is_empty() {
assert!(left == 0, "advancing io slices beyond their length");
} else {
bufs[0].advance(left);
}
}
/// Get the underlying bytes as a slice with the original lifetime.
///
/// This doesn't borrow from `self`, so is less restrictive than calling
/// `.deref()`, which does.
///
/// # Examples
///
/// ```
/// #![feature(io_slice_as_bytes)]
/// use std::io::IoSlice;
///
/// let data = b"abcdef";
///
/// let mut io_slice = IoSlice::new(data);
/// let tail = &io_slice.as_slice()[3..];
///
/// // This works because `tail` doesn't borrow `io_slice`
/// io_slice = IoSlice::new(tail);
///
/// assert_eq!(io_slice.as_slice(), b"def");
/// ```
#[unstable(feature = "io_slice_as_bytes", issue = "132818")]
pub const fn as_slice(self) -> &'a [u8] {
self.0.as_slice()
}
}
#[stable(feature = "iovec", since = "1.36.0")]
impl<'a> Deref for IoSlice<'a> {
type Target = [u8];
#[inline]
fn deref(&self) -> &[u8] {
self.0.as_slice()
}
}
/// A trait for objects which are byte-oriented sinks.
///
/// Implementors of the `Write` trait are sometimes called 'writers'.
///
/// Writers are defined by two required methods, [`write`] and [`flush`]:
///
/// * The [`write`] method will attempt to write some data into the object,
/// returning how many bytes were successfully written.
///
/// * The [`flush`] method is useful for adapters and explicit buffers
/// themselves for ensuring that all buffered data has been pushed out to the
/// 'true sink'.
///
/// Writers are intended to be composable with one another. Many implementors
/// throughout [`std::io`] take and provide types which implement the `Write`
/// trait.
///
/// [`write`]: Write::write
/// [`flush`]: Write::flush
/// [`std::io`]: self
///
/// # Examples
///
/// ```no_run
/// use std::io::prelude::*;
/// use std::fs::File;
///
/// fn main() -> std::io::Result<()> {
/// let data = b"some bytes";
///
/// let mut pos = 0;
/// let mut buffer = File::create("foo.txt")?;
///
/// while pos < data.len() {
/// let bytes_written = buffer.write(&data[pos..])?;
/// pos = bytes_written;
/// }
/// Ok(())
/// }
/// ```
///
/// The trait also provides convenience methods like [`write_all`], which calls
/// `write` in a loop until its entire input has been written.
///
/// [`write_all`]: Write::write_all
#[stable(feature = "rust1", since = "1.0.0")]
#[doc(notable_trait)]
#[cfg_attr(not(test), rustc_diagnostic_item = "IoWrite")]
pub trait Write {
/// Writes a buffer into this writer, returning how many bytes were written.
///
/// This function will attempt to write the entire contents of `buf`, but
/// the entire write might not succeed, or the write may also generate an
/// error. Typically, a call to `write` represents one attempt to write to
/// any wrapped object.
///
/// Calls to `write` are not guaranteed to block waiting for data to be
/// written, and a write which would otherwise block can be indicated through
/// an [`Err`] variant.
///
/// If this method consumed `n > 0` bytes of `buf` it must return [`Ok(n)`].
/// If the return value is `Ok(n)` then `n` must satisfy `n <= buf.len()`.
/// A return value of `Ok(0)` typically means that the underlying object is
/// no longer able to accept bytes and will likely not be able to in the
/// future as well, or that the buffer provided is empty.
///
/// # Errors
///
/// Each call to `write` may generate an I/O error indicating that the
/// operation could not be completed. If an error is returned then no bytes
/// in the buffer were written to this writer.
///
/// It is **not** considered an error if the entire buffer could not be
/// written to this writer.
///
/// An error of the [`ErrorKind::Interrupted`] kind is non-fatal and the
/// write operation should be retried if there is nothing else to do.
///
/// # Examples
///
/// ```no_run
/// use std::io::prelude::*;
/// use std::fs::File;
///
/// fn main() -> std::io::Result<()> {
/// let mut buffer = File::create("foo.txt")?;
///
/// // Writes some prefix of the byte string, not necessarily all of it.
/// buffer.write(b"some bytes")?;
/// Ok(())
/// }
/// ```
///
/// [`Ok(n)`]: Ok
#[stable(feature = "rust1", since = "1.0.0")]
fn write(&mut self, buf: &[u8]) -> Result<usize>;
/// Like [`write`], except that it writes from a slice of buffers.
///
/// Data is copied from each buffer in order, with the final buffer
/// read from possibly being only partially consumed. This method must
/// behave as a call to [`write`] with the buffers concatenated would.
///
/// The default implementation calls [`write`] with either the first nonempty
/// buffer provided, or an empty one if none exists.
///
/// # Examples
///
/// ```no_run
/// use std::io::IoSlice;
/// use std::io::prelude::*;
/// use std::fs::File;
///
/// fn main() -> std::io::Result<()> {
/// let data1 = [1; 8];
/// let data2 = [15; 8];
/// let io_slice1 = IoSlice::new(&data1);
/// let io_slice2 = IoSlice::new(&data2);
///
/// let mut buffer = File::create("foo.txt")?;
///
/// // Writes some prefix of the byte string, not necessarily all of it.
/// buffer.write_vectored(&[io_slice1, io_slice2])?;
/// Ok(())
/// }
/// ```
///
/// [`write`]: Write::write
#[stable(feature = "iovec", since = "1.36.0")]
fn write_vectored(&mut self, bufs: &[IoSlice<'_>]) -> Result<usize> {
default_write_vectored(|b| self.write(b), bufs)
}
/// Determines if this `Write`r has an efficient [`write_vectored`]
/// implementation.
///
/// If a `Write`r does not override the default [`write_vectored`]
/// implementation, code using it may want to avoid the method all together
/// and coalesce writes into a single buffer for higher performance.
///
/// The default implementation returns `false`.
///
/// [`write_vectored`]: Write::write_vectored
#[unstable(feature = "can_vector", issue = "69941")]
fn is_write_vectored(&self) -> bool {
false
}
/// Flushes this output stream, ensuring that all intermediately buffered
/// contents reach their destination.
///
/// # Errors
///
/// It is considered an error if not all bytes could be written due to
/// I/O errors or EOF being reached.
///
/// # Examples
///
/// ```no_run
/// use std::io::prelude::*;
/// use std::io::BufWriter;
/// use std::fs::File;
///
/// fn main() -> std::io::Result<()> {
/// let mut buffer = BufWriter::new(File::create("foo.txt")?);
///
/// buffer.write_all(b"some bytes")?;
/// buffer.flush()?;
/// Ok(())
/// }
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
fn flush(&mut self) -> Result<()>;
/// Attempts to write an entire buffer into this writer.
///
/// This method will continuously call [`write`] until there is no more data
/// to be written or an error of non-[`ErrorKind::Interrupted`] kind is
/// returned. This method will not return until the entire buffer has been
/// successfully written or such an error occurs. The first error that is
/// not of [`ErrorKind::Interrupted`] kind generated from this method will be
/// returned.
///
/// If the buffer contains no data, this will never call [`write`].
///
/// # Errors
///
/// This function will return the first error of
/// non-[`ErrorKind::Interrupted`] kind that [`write`] returns.
///
/// [`write`]: Write::write
///
/// # Examples
///
/// ```no_run
/// use std::io::prelude::*;
/// use std::fs::File;
///
/// fn main() -> std::io::Result<()> {
/// let mut buffer = File::create("foo.txt")?;
///
/// buffer.write_all(b"some bytes")?;
/// Ok(())
/// }
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
fn write_all(&mut self, mut buf: &[u8]) -> Result<()> {
while !buf.is_empty() {
match self.write(buf) {
Ok(0) => {
return Err(Error::WRITE_ALL_EOF);
}
Ok(n) => buf = &buf[n..],
Err(ref e) if e.is_interrupted() => {}
Err(e) => return Err(e),
}
}
Ok(())
}
/// Attempts to write multiple buffers into this writer.
///
/// This method will continuously call [`write_vectored`] until there is no
/// more data to be written or an error of non-[`ErrorKind::Interrupted`]
/// kind is returned. This method will not return until all buffers have
/// been successfully written or such an error occurs. The first error that
/// is not of [`ErrorKind::Interrupted`] kind generated from this method
/// will be returned.
///
/// If the buffer contains no data, this will never call [`write_vectored`].
///
/// # Notes
///
/// Unlike [`write_vectored`], this takes a *mutable* reference to
/// a slice of [`IoSlice`]s, not an immutable one. That's because we need to
/// modify the slice to keep track of the bytes already written.
///
/// Once this function returns, the contents of `bufs` are unspecified, as
/// this depends on how many calls to [`write_vectored`] were necessary. It is
/// best to understand this function as taking ownership of `bufs` and to
/// not use `bufs` afterwards. The underlying buffers, to which the
/// [`IoSlice`]s point (but not the [`IoSlice`]s themselves), are unchanged and
/// can be reused.
///
/// [`write_vectored`]: Write::write_vectored
///
/// # Examples
///
/// ```
/// #![feature(write_all_vectored)]
/// # fn main() -> std::io::Result<()> {
///
/// use std::io::{Write, IoSlice};
///
/// let mut writer = Vec::new();
/// let bufs = &mut [
/// IoSlice::new(&[1]),
/// IoSlice::new(&[2, 3]),
/// IoSlice::new(&[4, 5, 6]),
/// ];
///
/// writer.write_all_vectored(bufs)?;
/// // Note: the contents of `bufs` is now undefined, see the Notes section.
///
/// assert_eq!(writer, &[1, 2, 3, 4, 5, 6]);
/// # Ok(()) }
/// ```
#[unstable(feature = "write_all_vectored", issue = "70436")]
fn write_all_vectored(&mut self, mut bufs: &mut [IoSlice<'_>]) -> Result<()> {
// Guarantee that bufs is empty if it contains no data,
// to avoid calling write_vectored if there is no data to be written.
IoSlice::advance_slices(&mut bufs, 0);
while !bufs.is_empty() {
match self.write_vectored(bufs) {
Ok(0) => {
return Err(Error::WRITE_ALL_EOF);
}
Ok(n) => IoSlice::advance_slices(&mut bufs, n),
Err(ref e) if e.is_interrupted() => {}
Err(e) => return Err(e),
}
}
Ok(())
}
/// Writes a formatted string into this writer, returning any error
/// encountered.
///
/// This method is primarily used to interface with the
/// [`format_args!()`] macro, and it is rare that this should
/// explicitly be called. The [`write!()`] macro should be favored to
/// invoke this method instead.
///
/// This function internally uses the [`write_all`] method on
/// this trait and hence will continuously write data so long as no errors
/// are received. This also means that partial writes are not indicated in
/// this signature.
///
/// [`write_all`]: Write::write_all
///
/// # Errors
///
/// This function will return any I/O error reported while formatting.
///
/// # Examples
///
/// ```no_run
/// use std::io::prelude::*;
/// use std::fs::File;
///
/// fn main() -> std::io::Result<()> {
/// let mut buffer = File::create("foo.txt")?;
///
/// // this call
/// write!(buffer, "{:.*}", 2, 1.234567)?;
/// // turns into this:
/// buffer.write_fmt(format_args!("{:.*}", 2, 1.234567))?;
/// Ok(())
/// }
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
fn write_fmt(&mut self, fmt: fmt::Arguments<'_>) -> Result<()> {
// Create a shim which translates a Write to a fmt::Write and saves
// off I/O errors. instead of discarding them
struct Adapter<'a, T: ?Sized 'a> {
inner: &'a mut T,
error: Result<()>,
}
impl<T: Write ?Sized> fmt::Write for Adapter<'_, T> {
fn write_str(&mut self, s: &str) -> fmt::Result {
match self.inner.write_all(s.as_bytes()) {
Ok(()) => Ok(()),
Err(e) => {
self.error = Err(e);
Err(fmt::Error)
}
}
}
}
let mut output = Adapter { inner: self, error: Ok(()) };
match fmt::write(&mut output, fmt) {
Ok(()) => Ok(()),
Err(..) => {
// check if the error came from the underlying `Write` or not
if output.error.is_err() {
output.error
} else {
// This shouldn't happen: the underlying stream did not error, but somehow
// the formatter still errored?
panic!(
"a formatting trait implementation returned an error when the underlying stream did not"
);
}
}
}
}
/// Creates a "by reference" adapter for this instance of `Write`.
///
/// The returned adapter also implements `Write` and will simply borrow this
/// current writer.
///
/// # Examples
///
/// ```no_run
/// use std::io::Write;
/// use std::fs::File;
///
/// fn main() -> std::io::Result<()> {
/// let mut buffer = File::create("foo.txt")?;
///
/// let reference = buffer.by_ref();
///
/// // we can use reference just like our original buffer
/// reference.write_all(b"some bytes")?;
/// Ok(())
/// }
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
fn by_ref(&mut self) -> &mut Self
where
Self: Sized,
{
self
}
}
/// The `Seek` trait provides a cursor which can be moved within a stream of
/// bytes.
///
/// The stream typically has a fixed size, allowing seeking relative to either
/// end or the current offset.
///
/// # Examples
///
/// [`File`]s implement `Seek`:
///
/// [`File`]: crate::fs::File
///
/// ```no_run
/// use std::io;
/// use std::io::prelude::*;
/// use std::fs::File;
/// use std::io::SeekFrom;
///
/// fn main() -> io::Result<()> {
/// let mut f = File::open("foo.txt")?;
///
/// // move the cursor 42 bytes from the start of the file
/// f.seek(SeekFrom::Start(42))?;
/// Ok(())
/// }
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[cfg_attr(not(test), rustc_diagnostic_item = "IoSeek")]
pub trait Seek {
/// Seek to an offset, in bytes, in a stream.
///
/// A seek beyond the end of a stream is allowed, but behavior is defined
/// by the implementation.
///
/// If the seek operation completed successfully,
/// this method returns the new position from the start of the stream.
/// That position can be used later with [`SeekFrom::Start`].
///
/// # Errors
///
/// Seeking can fail, for example because it might involve flushing a buffer.
///
/// Seeking to a negative offset is considered an error.
#[stable(feature = "rust1", since = "1.0.0")]
fn seek(&mut self, pos: SeekFrom) -> Result<u64>;
/// Rewind to the beginning of a stream.
///
/// This is a convenience method, equivalent to `seek(SeekFrom::Start(0))`.
///
/// # Errors
///
/// Rewinding can fail, for example because it might involve flushing a buffer.
///
/// # Example
///
/// ```no_run
/// use std::io::{Read, Seek, Write};
/// use std::fs::OpenOptions;
///
/// let mut f = OpenOptions::new()
/// .write(true)
/// .read(true)
/// .create(true)
/// .open("foo.txt").unwrap();
///
/// let hello = "Hello!\n";
/// write!(f, "{hello}").unwrap();
/// f.rewind().unwrap();
///
/// let mut buf = String::new();
/// f.read_to_string(&mut buf).unwrap();
/// assert_eq!(&buf, hello);
/// ```
#[stable(feature = "seek_rewind", since = "1.55.0")]
fn rewind(&mut self) -> Result<()> {
self.seek(SeekFrom::Start(0))?;
Ok(())
}
/// Returns the length of this stream (in bytes).
///
/// This method is implemented using up to three seek operations. If this
/// method returns successfully, the seek position is unchanged (i.e. the
/// position before calling this method is the same as afterwards).
/// However, if this method returns an error, the seek position is
/// unspecified.
///
/// If you need to obtain the length of *many* streams and you don't care
/// about the seek position afterwards, you can reduce the number of seek
/// operations by simply calling `seek(SeekFrom::End(0))` and using its
/// return value (it is also the stream length).
///
/// Note that length of a stream can change over time (for example, when
/// data is appended to a file). So calling this method multiple times does
/// not necessarily return the same length each time.
///
/// # Example
///
/// ```no_run
/// #![feature(seek_stream_len)]
/// use std::{
/// io::{self, Seek},
/// fs::File,
/// };
///
/// fn main() -> io::Result<()> {
/// let mut f = File::open("foo.txt")?;
///
/// let len = f.stream_len()?;
/// println!("The file is currently {len} bytes long");
/// Ok(())
/// }
/// ```
#[unstable(feature = "seek_stream_len", issue = "59359")]
fn stream_len(&mut self) -> Result<u64> {
let old_pos = self.stream_position()?;
let len = self.seek(SeekFrom::End(0))?;
// Avoid seeking a third time when we were already at the end of the
// stream. The branch is usually way cheaper than a seek operation.
if old_pos != len {
self.seek(SeekFrom::Start(old_pos))?;
}
Ok(len)
}
/// Returns the current seek position from the start of the stream.
///
/// This is equivalent to `self.seek(SeekFrom::Current(0))`.
///
/// # Example
///
/// ```no_run
/// use std::{
/// io::{self, BufRead, BufReader, Seek},
/// fs::File,
/// };
///
/// fn main() -> io::Result<()> {
/// let mut f = BufReader::new(File::open("foo.txt")?);
///
/// let before = f.stream_position()?;
/// f.read_line(&mut String::new())?;
/// let after = f.stream_position()?;
///
/// println!("The first line was {} bytes long", after - before);
/// Ok(())
/// }
/// ```
#[stable(feature = "seek_convenience", since = "1.51.0")]
fn stream_position(&mut self) -> Result<u64> {
self.seek(SeekFrom::Current(0))
}
/// Seeks relative to the current position.
///
/// This is equivalent to `self.seek(SeekFrom::Current(offset))` but
/// doesn't return the new position which can allow some implementations
/// such as [`BufReader`] to perform more efficient seeks.
///
/// # Example
///
/// ```no_run
/// use std::{
/// io::{self, Seek},
/// fs::File,
/// };
///
/// fn main() -> io::Result<()> {
/// let mut f = File::open("foo.txt")?;
/// f.seek_relative(10)?;
/// assert_eq!(f.stream_position()?, 10);
/// Ok(())
/// }
/// ```
///
/// [`BufReader`]: crate::io::BufReader
#[stable(feature = "seek_seek_relative", since = "1.80.0")]
fn seek_relative(&mut self, offset: i64) -> Result<()> {
self.seek(SeekFrom::Current(offset))?;
Ok(())
}
}
/// Enumeration of possible methods to seek within an I/O object.
///
/// It is used by the [`Seek`] trait.
#[derive(Copy, PartialEq, Eq, Clone, Debug)]
#[stable(feature = "rust1", since = "1.0.0")]
#[cfg_attr(not(test), rustc_diagnostic_item = "SeekFrom")]
pub enum SeekFrom {
/// Sets the offset to the provided number of bytes.
#[stable(feature = "rust1", since = "1.0.0")]
Start(#[stable(feature = "rust1", since = "1.0.0")] u64),
/// Sets the offset to the size of this object plus the specified number of
/// bytes.
///
/// It is possible to seek beyond the end of an object, but it's an error to
/// seek before byte 0.
#[stable(feature = "rust1", since = "1.0.0")]
End(#[stable(feature = "rust1", since = "1.0.0")] i64),
/// Sets the offset to the current position plus the specified number of
/// bytes.
///
/// It is possible to seek beyond the end of an object, but it's an error to
/// seek before byte 0.
#[stable(feature = "rust1", since = "1.0.0")]
Current(#[stable(feature = "rust1", since = "1.0.0")] i64),
}
fn read_until<R: BufRead ?Sized>(r: &mut R, delim: u8, buf: &mut Vec<u8>) -> Result<usize> {
let mut read = 0;
loop {
let (done, used) = {
let available = match r.fill_buf() {
Ok(n) => n,
Err(ref e) if e.is_interrupted() => continue,
Err(e) => return Err(e),
};
match memchr::memchr(delim, available) {
Some(i) => {
buf.extend_from_slice(&available[..=i]);
(true, i 1)
}
None => {
buf.extend_from_slice(available);
(false, available.len())
}
}
};
r.consume(used);
read = used;
if done || used == 0 {
return Ok(read);
}
}
}
fn skip_until<R: BufRead ?Sized>(r: &mut R, delim: u8) -> Result<usize> {
let mut read = 0;
loop {
let (done, used) = {
let available = match r.fill_buf() {
Ok(n) => n,
Err(ref e) if e.kind() == ErrorKind::Interrupted => continue,
Err(e) => return Err(e),
};
match memchr::memchr(delim, available) {
Some(i) => (true, i 1),
None => (false, available.len()),
}
};
r.consume(used);
read = used;
if done || used == 0 {
return Ok(read);
}
}
}
/// A `BufRead` is a type of `Read`er which has an internal buffer, allowing it
/// to perform extra ways of reading.
///
/// For example, reading line-by-line is inefficient without using a buffer, so
/// if you want to read by line, you'll need `BufRead`, which includes a
/// [`read_line`] method as well as a [`lines`] iterator.
///
/// # Examples
///
/// A locked standard input implements `BufRead`:
///
/// ```no_run
/// use std::io;
/// use std::io::prelude::*;
///
/// let stdin = io::stdin();
/// for line in stdin.lock().lines() {
/// println!("{}", line.unwrap());
/// }
/// ```
///
/// If you have something that implements [`Read`], you can use the [`BufReader`
/// type][`BufReader`] to turn it into a `BufRead`.
///
/// For example, [`File`] implements [`Read`], but not `BufRead`.
/// [`BufReader`] to the rescue!
///
/// [`File`]: crate::fs::File
/// [`read_line`]: BufRead::read_line
/// [`lines`]: BufRead::lines
///
/// ```no_run
/// use std::io::{self, BufReader};
/// use std::io::prelude::*;
/// use std::fs::File;
///
/// fn main() -> io::Result<()> {
/// let f = File::open("foo.txt")?;
/// let f = BufReader::new(f);
///
/// for line in f.lines() {
/// println!("{}", line.unwrap());
/// }
///
/// Ok(())
/// }
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub trait BufRead: Read {
/// Returns the contents of the internal buffer, filling it with more data
/// from the inner reader if it is empty.
///
/// This function is a lower-level call. It needs to be paired with the
/// [`consume`] method to function properly. When calling this
/// method, none of the contents will be "read" in the sense that later
/// calling `read` may return the same contents. As such, [`consume`] must
/// be called with the number of bytes that are consumed from this buffer to
/// ensure that the bytes are never returned twice.
///
/// [`consume`]: BufRead::consume
///
/// An empty buffer returned indicates that the stream has reached EOF.
///
/// # Errors
///
/// This function will return an I/O error if the underlying reader was
/// read, but returned an error.
///
/// # Examples
///
/// A locked standard input implements `BufRead`:
///
/// ```no_run
/// use std::io;
/// use std::io::prelude::*;
///
/// let stdin = io::stdin();
/// let mut stdin = stdin.lock();
///
/// let buffer = stdin.fill_buf().unwrap();
///
/// // work with buffer
/// println!("{buffer:?}");
///
/// // ensure the bytes we worked with aren't returned again later
/// let length = buffer.len();
/// stdin.consume(length);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
fn fill_buf(&mut self) -> Result<&[u8]>;
/// Tells this buffer that `amt` bytes have been consumed from the buffer,
/// so they should no longer be returned in calls to `read`.
///
/// This function is a lower-level call. It needs to be paired with the
/// [`fill_buf`] method to function properly. This function does
/// not perform any I/O, it simply informs this object that some amount of
/// its buffer, returned from [`fill_buf`], has been consumed and should
/// no longer be returned. As such, this function may do odd things if
/// [`fill_buf`] isn't called before calling it.
///
/// The `amt` must be `<=` the number of bytes in the buffer returned by
/// [`fill_buf`].
///
/// # Examples
///
/// Since `consume()` is meant to be used with [`fill_buf`],
/// that method's example includes an example of `consume()`.
///
/// [`fill_buf`]: BufRead::fill_buf
#[stable(feature = "rust1", since = "1.0.0")]
fn consume(&mut self, amt: usize);
/// Checks if the underlying `Read` has any data left to be read.
///
/// This function may fill the buffer to check for data,
/// so this functions returns `Result<bool>`, not `bool`.
///
/// Default implementation calls `fill_buf` and checks that
/// returned slice is empty (which means that there is no data left,
/// since EOF is reached).
///
/// Examples
///
/// ```
/// #![feature(buf_read_has_data_left)]
/// use std::io;
/// use std::io::prelude::*;
///
/// let stdin = io::stdin();
/// let mut stdin = stdin.lock();
///
/// while stdin.has_data_left().unwrap() {
/// let mut line = String::new();
/// stdin.read_line(&mut line).unwrap();
/// // work with line
/// println!("{line:?}");
/// }
/// ```
#[unstable(feature = "buf_read_has_data_left", reason = "recently added", issue = "86423")]
fn has_data_left(&mut self) -> Result<bool> {
self.fill_buf().map(|b| !b.is_empty())
}
/// Reads all bytes into `buf` until the delimiter `byte` or EOF is reached.
///
/// This function will read bytes from the underlying stream until the
/// delimiter or EOF is found. Once found, all bytes up to, and including,
/// the delimiter (if found) will be appended to `buf`.
///
/// If successful, this function will return the total number of bytes read.
///
/// This function is blocking and should be used carefully: it is possible for
/// an attacker to continuously send bytes without ever sending the delimiter
/// or EOF.
///
/// # Errors
///
/// This function will ignore all instances of [`ErrorKind::Interrupted`] and
/// will otherwise return any errors returned by [`fill_buf`].
///
/// If an I/O error is encountered then all bytes read so far will be
/// present in `buf` and its length will have been adjusted appropriately.
///
/// [`fill_buf`]: BufRead::fill_buf
///
/// # Examples
///
/// [`std::io::Cursor`][`Cursor`] is a type that implements `BufRead`. In
/// this example, we use [`Cursor`] to read all the bytes in a byte slice
/// in hyphen delimited segments:
///
/// ```
/// use std::io::{self, BufRead};
///
/// let mut cursor = io::Cursor::new(b"lorem-ipsum");
/// let mut buf = vec![];
///
/// // cursor is at 'l'
/// let num_bytes = cursor.read_until(b'-', &mut buf)
/// .expect("reading from cursor won't fail");
/// assert_eq!(num_bytes, 6);
/// assert_eq!(buf, b"lorem-");
/// buf.clear();
///
/// // cursor is at 'i'
/// let num_bytes = cursor.read_until(b'-', &mut buf)
/// .expect("reading from cursor won't fail");
/// assert_eq!(num_bytes, 5);
/// assert_eq!(buf, b"ipsum");
/// buf.clear();
///
/// // cursor is at EOF
/// let num_bytes = cursor.read_until(b'-', &mut buf)
/// .expect("reading from cursor won't fail");
/// assert_eq!(num_bytes, 0);
/// assert_eq!(buf, b"");
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
fn read_until(&mut self, byte: u8, buf: &mut Vec<u8>) -> Result<usize> {
read_until(self, byte, buf)
}
/// Skips all bytes until the delimiter `byte` or EOF is reached.
///
/// This function will read (and discard) bytes from the underlying stream until the
/// delimiter or EOF is found.
///
/// If successful, this function will return the total number of bytes read,
/// including the delimiter byte.
///
/// This is useful for efficiently skipping data such as NUL-terminated strings
/// in binary file formats without buffering.
///
/// This function is blocking and should be used carefully: it is possible for
/// an attacker to continuously send bytes without ever sending the delimiter
/// or EOF.
///
/// # Errors
///
/// This function will ignore all instances of [`ErrorKind::Interrupted`] and
/// will otherwise return any errors returned by [`fill_buf`].
///
/// If an I/O error is encountered then all bytes read so far will be
/// present in `buf` and its length will have been adjusted appropriately.
///
/// [`fill_buf`]: BufRead::fill_buf
///
/// # Examples
///
/// [`std::io::Cursor`][`Cursor`] is a type that implements `BufRead`. In
/// this example, we use [`Cursor`] to read some NUL-terminated information
/// about Ferris from a binary string, skipping the fun fact:
///
/// ```
/// use std::io::{self, BufRead};
///
/// let mut cursor = io::Cursor::new(b"Ferris\0Likes long walks on the beach\0Crustacean\0");
///
/// // read name
/// let mut name = Vec::new();
/// let num_bytes = cursor.read_until(b'\0', &mut name)
/// .expect("reading from cursor won't fail");
/// assert_eq!(num_bytes, 7);
/// assert_eq!(name, b"Ferris\0");
///
/// // skip fun fact
/// let num_bytes = cursor.skip_until(b'\0')
/// .expect("reading from cursor won't fail");
/// assert_eq!(num_bytes, 30);
///
/// // read animal type
/// let mut animal = Vec::new();
/// let num_bytes = cursor.read_until(b'\0', &mut animal)
/// .expect("reading from cursor won't fail");
/// assert_eq!(num_bytes, 11);
/// assert_eq!(animal, b"Crustacean\0");
/// ```
#[stable(feature = "bufread_skip_until", since = "1.83.0")]
fn skip_until(&mut self, byte: u8) -> Result<usize> {
skip_until(self, byte)
}
/// Reads all bytes until a newline (the `0xA` byte) is reached, and append
/// them to the provided `String` buffer.
///
/// Previous content of the buffer will be preserved. To avoid appending to
/// the buffer, you need to [`clear`] it first.
///
/// This function will read bytes from the underlying stream until the
/// newline delimiter (the `0xA` byte) or EOF is found. Once found, all bytes
/// up to, and including, the delimiter (if found) will be appended to
/// `buf`.
///
/// If successful, this function will return the total number of bytes read.
///
/// If this function returns [`Ok(0)`], the stream has reached EOF.
///
/// This function is blocking and should be used carefully: it is possible for
/// an attacker to continuously send bytes without ever sending a newline
/// or EOF. You can use [`take`] to limit the maximum number of bytes read.
///
/// [`Ok(0)`]: Ok
/// [`clear`]: String::clear
/// [`take`]: crate::io::Read::take
///
/// # Errors
///
/// This function has the same error semantics as [`read_until`] and will
/// also return an error if the read bytes are not valid UTF-8. If an I/O
/// error is encountered then `buf` may contain some bytes already read in
/// the event that all data read so far was valid UTF-8.
///
/// [`read_until`]: BufRead::read_until
///
/// # Examples
///
/// [`std::io::Cursor`][`Cursor`] is a type that implements `BufRead`. In
/// this example, we use [`Cursor`] to read all the lines in a byte slice:
///
/// ```
/// use std::io::{self, BufRead};
///
/// let mut cursor = io::Cursor::new(b"foo\nbar");
/// let mut buf = String::new();
///
/// // cursor is at 'f'
/// let num_bytes = cursor.read_line(&mut buf)
/// .expect("reading from cursor won't fail");
/// assert_eq!(num_bytes, 4);
/// assert_eq!(buf, "foo\n");
/// buf.clear();
///
/// // cursor is at 'b'
/// let num_bytes = cursor.read_line(&mut buf)
/// .expect("reading from cursor won't fail");
/// assert_eq!(num_bytes, 3);
/// assert_eq!(buf, "bar");
/// buf.clear();
///
/// // cursor is at EOF
/// let num_bytes = cursor.read_line(&mut buf)
/// .expect("reading from cursor won't fail");
/// assert_eq!(num_bytes, 0);
/// assert_eq!(buf, "");
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
fn read_line(&mut self, buf: &mut String) -> Result<usize> {
// Note that we are not calling the `.read_until` method here, but
// rather our hardcoded implementation. For more details as to why, see
// the comments in `read_to_end`.
unsafe { append_to_string(buf, |b| read_until(self, b'\n', b)) }
}
/// Returns an iterator over the contents of this reader split on the byte
/// `byte`.
///
/// The iterator returned from this function will return instances of
/// <code>[io::Result]<[Vec]\<u8>></code>. Each vector returned will *not* have
/// the delimiter byte at the end.
///
/// This function will yield errors whenever [`read_until`] would have
/// also yielded an error.
///
/// [io::Result]: self::Result "io::Result"
/// [`read_until`]: BufRead::read_until
///
/// # Examples
///
/// [`std::io::Cursor`][`Cursor`] is a type that implements `BufRead`. In
/// this example, we use [`Cursor`] to iterate over all hyphen delimited
/// segments in a byte slice
///
/// ```
/// use std::io::{self, BufRead};
///
/// let cursor = io::Cursor::new(b"lorem-ipsum-dolor");
///
/// let mut split_iter = cursor.split(b'-').map(|l| l.unwrap());
/// assert_eq!(split_iter.next(), Some(b"lorem".to_vec()));
/// assert_eq!(split_iter.next(), Some(b"ipsum".to_vec()));
/// assert_eq!(split_iter.next(), Some(b"dolor".to_vec()));
/// assert_eq!(split_iter.next(), None);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
fn split(self, byte: u8) -> Split<Self>
where
Self: Sized,
{
Split { buf: self, delim: byte }
}
/// Returns an iterator over the lines of this reader.
///
/// The iterator returned from this function will yield instances of
/// <code>[io::Result]<[String]></code>. Each string returned will *not* have a newline
/// byte (the `0xA` byte) or `CRLF` (`0xD`, `0xA` bytes) at the end.
///
/// [io::Result]: self::Result "io::Result"
///
/// # Examples
///
/// [`std::io::Cursor`][`Cursor`] is a type that implements `BufRead`. In
/// this example, we use [`Cursor`] to iterate over all the lines in a byte
/// slice.
///
/// ```
/// use std::io::{self, BufRead};
///
/// let cursor = io::Cursor::new(b"lorem\nipsum\r\ndolor");
///
/// let mut lines_iter = cursor.lines().map(|l| l.unwrap());
/// assert_eq!(lines_iter.next(), Some(String::from("lorem")));
/// assert_eq!(lines_iter.next(), Some(String::from("ipsum")));
/// assert_eq!(lines_iter.next(), Some(String::from("dolor")));
/// assert_eq!(lines_iter.next(), None);
/// ```
///
/// # Errors
///
/// Each line of the iterator has the same error semantics as [`BufRead::read_line`].
#[stable(feature = "rust1", since = "1.0.0")]
fn lines(self) -> Lines<Self>
where
Self: Sized,
{
Lines { buf: self }
}
}
/// Adapter to chain together two readers.
///
/// This struct is generally created by calling [`chain`] on a reader.
/// Please see the documentation of [`chain`] for more details.
///
/// [`chain`]: Read::chain
#[stable(feature = "rust1", since = "1.0.0")]
#[derive(Debug)]
pub struct Chain<T, U> {
first: T,
second: U,
done_first: bool,
}
impl<T, U> Chain<T, U> {
/// Consumes the `Chain`, returning the wrapped readers.
///
/// # Examples
///
/// ```no_run
/// use std::io;
/// use std::io::prelude::*;
/// use std::fs::File;
///
/// fn main() -> io::Result<()> {
/// let mut foo_file = File::open("foo.txt")?;
/// let mut bar_file = File::open("bar.txt")?;
///
/// let chain = foo_file.chain(bar_file);
/// let (foo_file, bar_file) = chain.into_inner();
/// Ok(())
/// }
/// ```
#[stable(feature = "more_io_inner_methods", since = "1.20.0")]
pub fn into_inner(self) -> (T, U) {
(self.first, self.second)
}
/// Gets references to the underlying readers in this `Chain`.
///
/// # Examples
///
/// ```no_run
/// use std::io;
/// use std::io::prelude::*;
/// use std::fs::File;
///
/// fn main() -> io::Result<()> {
/// let mut foo_file = File::open("foo.txt")?;
/// let mut bar_file = File::open("bar.txt")?;
///
/// let chain = foo_file.chain(bar_file);
/// let (foo_file, bar_file) = chain.get_ref();
/// Ok(())
/// }
/// ```
#[stable(feature = "more_io_inner_methods", since = "1.20.0")]
pub fn get_ref(&self) -> (&T, &U) {
(&self.first, &self.second)
}
/// Gets mutable references to the underlying readers in this `Chain`.
///
/// Care should be taken to avoid modifying the internal I/O state of the
/// underlying readers as doing so may corrupt the internal state of this
/// `Chain`.
///
/// # Examples
///
/// ```no_run
/// use std::io;
/// use std::io::prelude::*;
/// use std::fs::File;
///
/// fn main() -> io::Result<()> {
/// let mut foo_file = File::open("foo.txt")?;
/// let mut bar_file = File::open("bar.txt")?;
///
/// let mut chain = foo_file.chain(bar_file);
/// let (foo_file, bar_file) = chain.get_mut();
/// Ok(())
/// }
/// ```
#[stable(feature = "more_io_inner_methods", since = "1.20.0")]
pub fn get_mut(&mut self) -> (&mut T, &mut U) {
(&mut self.first, &mut self.second)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: Read, U: Read> Read for Chain<T, U> {
fn read(&mut self, buf: &mut [u8]) -> Result<usize> {
if !self.done_first {
match self.first.read(buf)? {
0 if !buf.is_empty() => self.done_first = true,
n => return Ok(n),
}
}
self.second.read(buf)
}
fn read_vectored(&mut self, bufs: &mut [IoSliceMut<'_>]) -> Result<usize> {
if !self.done_first {
match self.first.read_vectored(bufs)? {
0 if bufs.iter().any(|b| !b.is_empty()) => self.done_first = true,
n => return Ok(n),
}
}
self.second.read_vectored(bufs)
}
#[inline]
fn is_read_vectored(&self) -> bool {
self.first.is_read_vectored() || self.second.is_read_vectored()
}
fn read_to_end(&mut self, buf: &mut Vec<u8>) -> Result<usize> {
let mut read = 0;
if !self.done_first {
read = self.first.read_to_end(buf)?;
self.done_first = true;
}
read = self.second.read_to_end(buf)?;
Ok(read)
}
// We don't override `read_to_string` here because an UTF-8 sequence could
// be split between the two parts of the chain
fn read_buf(&mut self, mut buf: BorrowedCursor<'_>) -> Result<()> {
if buf.capacity() == 0 {
return Ok(());
}
if !self.done_first {
let old_len = buf.written();
self.first.read_buf(buf.reborrow())?;
if buf.written() != old_len {
return Ok(());
} else {
self.done_first = true;
}
}
self.second.read_buf(buf)
}
}
#[stable(feature = "chain_bufread", since = "1.9.0")]
impl<T: BufRead, U: BufRead> BufRead for Chain<T, U> {
fn fill_buf(&mut self) -> Result<&[u8]> {
if !self.done_first {
match self.first.fill_buf()? {
buf if buf.is_empty() => self.done_first = true,
buf => return Ok(buf),
}
}
self.second.fill_buf()
}
fn consume(&mut self, amt: usize) {
if !self.done_first { self.first.consume(amt) } else { self.second.consume(amt) }
}
fn read_until(&mut self, byte: u8, buf: &mut Vec<u8>) -> Result<usize> {
let mut read = 0;
if !self.done_first {
let n = self.first.read_until(byte, buf)?;
read = n;
match buf.last() {
Some(b) if *b == byte && n != 0 => return Ok(read),
_ => self.done_first = true,
}
}
read = self.second.read_until(byte, buf)?;
Ok(read)
}
// We don't override `read_line` here because an UTF-8 sequence could be
// split between the two parts of the chain
}
impl<T, U> SizeHint for Chain<T, U> {
#[inline]
fn lower_bound(&self) -> usize {
SizeHint::lower_bound(&self.first) SizeHint::lower_bound(&self.second)
}
#[inline]
fn upper_bound(&self) -> Option<usize> {
match (SizeHint::upper_bound(&self.first), SizeHint::upper_bound(&self.second)) {
(Some(first), Some(second)) => first.checked_add(second),
_ => None,
}
}
}
/// Reader adapter which limits the bytes read from an underlying reader.
///
/// This struct is generally created by calling [`take`] on a reader.
/// Please see the documentation of [`take`] for more details.
///
/// [`take`]: Read::take
#[stable(feature = "rust1", since = "1.0.0")]
#[derive(Debug)]
pub struct Take<T> {
inner: T,
limit: u64,
}
impl<T> Take<T> {
/// Returns the number of bytes that can be read before this instance will
/// return EOF.
///
/// # Note
///
/// This instance may reach `EOF` after reading fewer bytes than indicated by
/// this method if the underlying [`Read`] instance reaches EOF.
///
/// # Examples
///
/// ```no_run
/// use std::io;
/// use std::io::prelude::*;
/// use std::fs::File;
///
/// fn main() -> io::Result<()> {
/// let f = File::open("foo.txt")?;
///
/// // read at most five bytes
/// let handle = f.take(5);
///
/// println!("limit: {}", handle.limit());
/// Ok(())
/// }
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn limit(&self) -> u64 {
self.limit
}
/// Sets the number of bytes that can be read before this instance will
/// return EOF. This is the same as constructing a new `Take` instance, so
/// the amount of bytes read and the previous limit value don't matter when
/// calling this method.
///
/// # Examples
///
/// ```no_run
/// use std::io;
/// use std::io::prelude::*;
/// use std::fs::File;
///
/// fn main() -> io::Result<()> {
/// let f = File::open("foo.txt")?;
///
/// // read at most five bytes
/// let mut handle = f.take(5);
/// handle.set_limit(10);
///
/// assert_eq!(handle.limit(), 10);
/// Ok(())
/// }
/// ```
#[stable(feature = "take_set_limit", since = "1.27.0")]
pub fn set_limit(&mut self, limit: u64) {
self.limit = limit;
}
/// Consumes the `Take`, returning the wrapped reader.
///
/// # Examples
///
/// ```no_run
/// use std::io;
/// use std::io::prelude::*;
/// use std::fs::File;
///
/// fn main() -> io::Result<()> {
/// let mut file = File::open("foo.txt")?;
///
/// let mut buffer = [0; 5];
/// let mut handle = file.take(5);
/// handle.read(&mut buffer)?;
///
/// let file = handle.into_inner();
/// Ok(())
/// }
/// ```
#[stable(feature = "io_take_into_inner", since = "1.15.0")]
pub fn into_inner(self) -> T {
self.inner
}
/// Gets a reference to the underlying reader.
///
/// # Examples
///
/// ```no_run
/// use std::io;
/// use std::io::prelude::*;
/// use std::fs::File;
///
/// fn main() -> io::Result<()> {
/// let mut file = File::open("foo.txt")?;
///
/// let mut buffer = [0; 5];
/// let mut handle = file.take(5);
/// handle.read(&mut buffer)?;
///
/// let file = handle.get_ref();
/// Ok(())
/// }
/// ```
#[stable(feature = "more_io_inner_methods", since = "1.20.0")]
pub fn get_ref(&self) -> &T {
&self.inner
}
/// Gets a mutable reference to the underlying reader.
///
/// Care should be taken to avoid modifying the internal I/O state of the
/// underlying reader as doing so may corrupt the internal limit of this
/// `Take`.
///
/// # Examples
///
/// ```no_run
/// use std::io;
/// use std::io::prelude::*;
/// use std::fs::File;
///
/// fn main() -> io::Result<()> {
/// let mut file = File::open("foo.txt")?;
///
/// let mut buffer = [0; 5];
/// let mut handle = file.take(5);
/// handle.read(&mut buffer)?;
///
/// let file = handle.get_mut();
/// Ok(())
/// }
/// ```
#[stable(feature = "more_io_inner_methods", since = "1.20.0")]
pub fn get_mut(&mut self) -> &mut T {
&mut self.inner
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: Read> Read for Take<T> {
fn read(&mut self, buf: &mut [u8]) -> Result<usize> {
// Don't call into inner reader at all at EOF because it may still block
if self.limit == 0 {
return Ok(0);
}
let max = cmp::min(buf.len() as u64, self.limit) as usize;
let n = self.inner.read(&mut buf[..max])?;
assert!(n as u64 <= self.limit, "number of read bytes exceeds limit");
self.limit -= n as u64;
Ok(n)
}
fn read_buf(&mut self, mut buf: BorrowedCursor<'_>) -> Result<()> {
// Don't call into inner reader at all at EOF because it may still block
if self.limit == 0 {
return Ok(());
}
if self.limit <= buf.capacity() as u64 {
// if we just use an as cast to convert, limit may wrap around on a 32 bit target
let limit = cmp::min(self.limit, usize::MAX as u64) as usize;
let extra_init = cmp::min(limit as usize, buf.init_ref().len());
// SAFETY: no uninit data is written to ibuf
let ibuf = unsafe { &mut buf.as_mut()[..limit] };
let mut sliced_buf: BorrowedBuf<'_> = ibuf.into();
// SAFETY: extra_init bytes of ibuf are known to be initialized
unsafe {
sliced_buf.set_init(extra_init);
}
let mut cursor = sliced_buf.unfilled();
let result = self.inner.read_buf(cursor.reborrow());
let new_init = cursor.init_ref().len();
let filled = sliced_buf.len();
// cursor / sliced_buf / ibuf must drop here
unsafe {
// SAFETY: filled bytes have been filled and therefore initialized
buf.advance_unchecked(filled);
// SAFETY: new_init bytes of buf's unfilled buffer have been initialized
buf.set_init(new_init);
}
self.limit -= filled as u64;
result
} else {
let written = buf.written();
let result = self.inner.read_buf(buf.reborrow());
self.limit -= (buf.written() - written) as u64;
result
}
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: BufRead> BufRead for Take<T> {
fn fill_buf(&mut self) -> Result<&[u8]> {
// Don't call into inner reader at all at EOF because it may still block
if self.limit == 0 {
return Ok(&[]);
}
let buf = self.inner.fill_buf()?;
let cap = cmp::min(buf.len() as u64, self.limit) as usize;
Ok(&buf[..cap])
}
fn consume(&mut self, amt: usize) {
// Don't let callers reset the limit by passing an overlarge value
let amt = cmp::min(amt as u64, self.limit) as usize;
self.limit -= amt as u64;
self.inner.consume(amt);
}
}
impl<T> SizeHint for Take<T> {
#[inline]
fn lower_bound(&self) -> usize {
cmp::min(SizeHint::lower_bound(&self.inner) as u64, self.limit) as usize
}
#[inline]
fn upper_bound(&self) -> Option<usize> {
match SizeHint::upper_bound(&self.inner) {
Some(upper_bound) => Some(cmp::min(upper_bound as u64, self.limit) as usize),
None => self.limit.try_into().ok(),
}
}
}
/// An iterator over `u8` values of a reader.
///
/// This struct is generally created by calling [`bytes`] on a reader.
/// Please see the documentation of [`bytes`] for more details.
///
/// [`bytes`]: Read::bytes
#[stable(feature = "rust1", since = "1.0.0")]
#[derive(Debug)]
pub struct Bytes<R> {
inner: R,
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<R: Read> Iterator for Bytes<R> {
type Item = Result<u8>;
// Not `#[inline]`. This function gets inlined even without it, but having
// the inline annotation can result in worse code generation. See #116785.
fn next(&mut self) -> Option<Result<u8>> {
SpecReadByte::spec_read_byte(&mut self.inner)
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
SizeHint::size_hint(&self.inner)
}
}
/// For the specialization of `Bytes::next`.
trait SpecReadByte {
fn spec_read_byte(&mut self) -> Option<Result<u8>>;
}
impl<R> SpecReadByte for R
where
Self: Read,
{
#[inline]
default fn spec_read_byte(&mut self) -> Option<Result<u8>> {
inlined_slow_read_byte(self)
}
}
/// Reads a single byte in a slow, generic way. This is used by the default
/// `spec_read_byte`.
#[inline]
fn inlined_slow_read_byte<R: Read>(reader: &mut R) -> Option<Result<u8>> {
let mut byte = 0;
loop {
return match reader.read(slice::from_mut(&mut byte)) {
Ok(0) => None,
Ok(..) => Some(Ok(byte)),
Err(ref e) if e.is_interrupted() => continue,
Err(e) => Some(Err(e)),
};
}
}
// Used by `BufReader::spec_read_byte`, for which the `inline(ever)` is
// important.
#[inline(never)]
fn uninlined_slow_read_byte<R: Read>(reader: &mut R) -> Option<Result<u8>> {
inlined_slow_read_byte(reader)
}
trait SizeHint {
fn lower_bound(&self) -> usize;
fn upper_bound(&self) -> Option<usize>;
fn size_hint(&self) -> (usize, Option<usize>) {
(self.lower_bound(), self.upper_bound())
}
}
impl<T: ?Sized> SizeHint for T {
#[inline]
default fn lower_bound(&self) -> usize {
0
}
#[inline]
default fn upper_bound(&self) -> Option<usize> {
None
}
}
impl<T> SizeHint for &mut T {
#[inline]
fn lower_bound(&self) -> usize {
SizeHint::lower_bound(*self)
}
#[inline]
fn upper_bound(&self) -> Option<usize> {
SizeHint::upper_bound(*self)
}
}
impl<T> SizeHint for Box<T> {
#[inline]
fn lower_bound(&self) -> usize {
SizeHint::lower_bound(&**self)
}
#[inline]
fn upper_bound(&self) -> Option<usize> {
SizeHint::upper_bound(&**self)
}
}
impl SizeHint for &[u8] {
#[inline]
fn lower_bound(&self) -> usize {
self.len()
}
#[inline]
fn upper_bound(&self) -> Option<usize> {
Some(self.len())
}
}
/// An iterator over the contents of an instance of `BufRead` split on a
/// particular byte.
///
/// This struct is generally created by calling [`split`] on a `BufRead`.
/// Please see the documentation of [`split`] for more details.
///
/// [`split`]: BufRead::split
#[stable(feature = "rust1", since = "1.0.0")]
#[derive(Debug)]
pub struct Split<B> {
buf: B,
delim: u8,
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<B: BufRead> Iterator for Split<B> {
type Item = Result<Vec<u8>>;
fn next(&mut self) -> Option<Result<Vec<u8>>> {
let mut buf = Vec::new();
match self.buf.read_until(self.delim, &mut buf) {
Ok(0) => None,
Ok(_n) => {
if buf[buf.len() - 1] == self.delim {
buf.pop();
}
Some(Ok(buf))
}
Err(e) => Some(Err(e)),
}
}
}
/// An iterator over the lines of an instance of `BufRead`.
///
/// This struct is generally created by calling [`lines`] on a `BufRead`.
/// Please see the documentation of [`lines`] for more details.
///
/// [`lines`]: BufRead::lines
#[stable(feature = "rust1", since = "1.0.0")]
#[derive(Debug)]
#[cfg_attr(not(test), rustc_diagnostic_item = "IoLines")]
pub struct Lines<B> {
buf: B,
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<B: BufRead> Iterator for Lines<B> {
type Item = Result<String>;
fn next(&mut self) -> Option<Result<String>> {
let mut buf = String::new();
match self.buf.read_line(&mut buf) {
Ok(0) => None,
Ok(_n) => {
if buf.ends_with('\n') {
buf.pop();
if buf.ends_with('\r') {
buf.pop();
}
}
Some(Ok(buf))
}
Err(e) => Some(Err(e)),
}
}
}