core/convert/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 863 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973
//! Traits for conversions between types.
//!
//! The traits in this module provide a way to convert from one type to another type.
//! Each trait serves a different purpose:
//!
//! - Implement the [`AsRef`] trait for cheap reference-to-reference conversions
//! - Implement the [`AsMut`] trait for cheap mutable-to-mutable conversions
//! - Implement the [`From`] trait for consuming value-to-value conversions
//! - Implement the [`Into`] trait for consuming value-to-value conversions to types
//! outside the current crate
//! - The [`TryFrom`] and [`TryInto`] traits behave like [`From`] and [`Into`],
//! but should be implemented when the conversion can fail.
//!
//! The traits in this module are often used as trait bounds for generic functions such that to
//! arguments of multiple types are supported. See the documentation of each trait for examples.
//!
//! As a library author, you should always prefer implementing [`From<T>`][`From`] or
//! [`TryFrom<T>`][`TryFrom`] rather than [`Into<U>`][`Into`] or [`TryInto<U>`][`TryInto`],
//! as [`From`] and [`TryFrom`] provide greater flexibility and offer
//! equivalent [`Into`] or [`TryInto`] implementations for free, thanks to a
//! blanket implementation in the standard library. When targeting a version prior to Rust 1.41, it
//! may be necessary to implement [`Into`] or [`TryInto`] directly when converting to a type
//! outside the current crate.
//!
//! # Generic Implementations
//!
//! - [`AsRef`] and [`AsMut`] auto-dereference if the inner type is a reference
//! (but not generally for all [dereferenceable types][core::ops::Deref])
//! - [`From`]`<U> for T` implies [`Into`]`<T> for U`
//! - [`TryFrom`]`<U> for T` implies [`TryInto`]`<T> for U`
//! - [`From`] and [`Into`] are reflexive, which means that all types can
//! `into` themselves and `from` themselves
//!
//! See each trait for usage examples.
#![stable(feature = "rust1", since = "1.0.0")]
use crate::error::Error;
use crate::fmt;
use crate::hash::{Hash, Hasher};
mod num;
#[unstable(feature = "convert_float_to_int", issue = "67057")]
pub use num::FloatToInt;
/// The identity function.
///
/// Two things are important to note about this function:
///
/// - It is not always equivalent to a closure like `|x| x`, since the
/// closure may coerce `x` into a different type.
///
/// - It moves the input `x` passed to the function.
///
/// While it might seem strange to have a function that just returns back the
/// input, there are some interesting uses.
///
/// # Examples
///
/// Using `identity` to do nothing in a sequence of other, interesting,
/// functions:
///
/// ```rust
/// use std::convert::identity;
///
/// fn manipulation(x: u32) -> u32 {
/// // Let's pretend that adding one is an interesting function.
/// x 1
/// }
///
/// let _arr = &[identity, manipulation];
/// ```
///
/// Using `identity` as a "do nothing" base case in a conditional:
///
/// ```rust
/// use std::convert::identity;
///
/// # let condition = true;
/// #
/// # fn manipulation(x: u32) -> u32 { x 1 }
/// #
/// let do_stuff = if condition { manipulation } else { identity };
///
/// // Do more interesting stuff...
///
/// let _results = do_stuff(42);
/// ```
///
/// Using `identity` to keep the `Some` variants of an iterator of `Option<T>`:
///
/// ```rust
/// use std::convert::identity;
///
/// let iter = [Some(1), None, Some(3)].into_iter();
/// let filtered = iter.filter_map(identity).collect::<Vec<_>>();
/// assert_eq!(vec![1, 3], filtered);
/// ```
#[stable(feature = "convert_id", since = "1.33.0")]
#[rustc_const_stable(feature = "const_identity", since = "1.33.0")]
#[inline(always)]
#[rustc_diagnostic_item = "convert_identity"]
pub const fn identity<T>(x: T) -> T {
x
}
/// Used to do a cheap reference-to-reference conversion.
///
/// This trait is similar to [`AsMut`] which is used for converting between mutable references.
/// If you need to do a costly conversion it is better to implement [`From`] with type
/// `&T` or write a custom function.
///
/// # Relation to `Borrow`
///
/// `AsRef` has the same signature as [`Borrow`], but [`Borrow`] is different in a few aspects:
///
/// - Unlike `AsRef`, [`Borrow`] has a blanket impl for any `T`, and can be used to accept either
/// a reference or a value. (See also note on `AsRef`'s reflexibility below.)
/// - [`Borrow`] also requires that [`Hash`], [`Eq`] and [`Ord`] for a borrowed value are
/// equivalent to those of the owned value. For this reason, if you want to
/// borrow only a single field of a struct you can implement `AsRef`, but not [`Borrow`].
///
/// **Note: This trait must not fail**. If the conversion can fail, use a
/// dedicated method which returns an [`Option<T>`] or a [`Result<T, E>`].
///
/// # Generic Implementations
///
/// `AsRef` auto-dereferences if the inner type is a reference or a mutable reference
/// (e.g.: `foo.as_ref()` will work the same if `foo` has type `&mut Foo` or `&&mut Foo`).
///
/// Note that due to historic reasons, the above currently does not hold generally for all
/// [dereferenceable types], e.g. `foo.as_ref()` will *not* work the same as
/// `Box::new(foo).as_ref()`. Instead, many smart pointers provide an `as_ref` implementation which
/// simply returns a reference to the [pointed-to value] (but do not perform a cheap
/// reference-to-reference conversion for that value). However, [`AsRef::as_ref`] should not be
/// used for the sole purpose of dereferencing; instead ['`Deref` coercion'] can be used:
///
/// [dereferenceable types]: core::ops::Deref
/// [pointed-to value]: core::ops::Deref::Target
/// ['`Deref` coercion']: core::ops::Deref#deref-coercion
///
/// ```
/// let x = Box::new(5i32);
/// // Avoid this:
/// // let y: &i32 = x.as_ref();
/// // Better just write:
/// let y: &i32 = &x;
/// ```
///
/// Types which implement [`Deref`] should consider implementing `AsRef<T>` as follows:
///
/// [`Deref`]: core::ops::Deref
///
/// ```
/// # use core::ops::Deref;
/// # struct SomeType;
/// # impl Deref for SomeType {
/// # type Target = [u8];
/// # fn deref(&self) -> &[u8] {
/// # &[]
/// # }
/// # }
/// impl<T> AsRef<T> for SomeType
/// where
/// T: ?Sized,
/// <SomeType as Deref>::Target: AsRef<T>,
/// {
/// fn as_ref(&self) -> &T {
/// self.deref().as_ref()
/// }
/// }
/// ```
///
/// # Reflexivity
///
/// Ideally, `AsRef` would be reflexive, i.e. there would be an `impl<T: ?Sized> AsRef<T> for T`
/// with [`as_ref`] simply returning its argument unchanged.
/// Such a blanket implementation is currently *not* provided due to technical restrictions of
/// Rust's type system (it would be overlapping with another existing blanket implementation for
/// `&T where T: AsRef<U>` which allows `AsRef` to auto-dereference, see "Generic Implementations"
/// above).
///
/// [`as_ref`]: AsRef::as_ref
///
/// A trivial implementation of `AsRef<T> for T` must be added explicitly for a particular type `T`
/// where needed or desired. Note, however, that not all types from `std` contain such an
/// implementation, and those cannot be added by external code due to orphan rules.
///
/// # Examples
///
/// By using trait bounds we can accept arguments of different types as long as they can be
/// converted to the specified type `T`.
///
/// For example: By creating a generic function that takes an `AsRef<str>` we express that we
/// want to accept all references that can be converted to [`&str`] as an argument.
/// Since both [`String`] and [`&str`] implement `AsRef<str>` we can accept both as input argument.
///
/// [`&str`]: primitive@str
/// [`Borrow`]: crate::borrow::Borrow
/// [`Eq`]: crate::cmp::Eq
/// [`Ord`]: crate::cmp::Ord
/// [`String`]: ../../std/string/struct.String.html
///
/// ```
/// fn is_hello<T: AsRef<str>>(s: T) {
/// assert_eq!("hello", s.as_ref());
/// }
///
/// let s = "hello";
/// is_hello(s);
///
/// let s = "hello".to_string();
/// is_hello(s);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[cfg_attr(not(test), rustc_diagnostic_item = "AsRef")]
pub trait AsRef<T: ?Sized> {
/// Converts this type into a shared reference of the (usually inferred) input type.
#[stable(feature = "rust1", since = "1.0.0")]
fn as_ref(&self) -> &T;
}
/// Used to do a cheap mutable-to-mutable reference conversion.
///
/// This trait is similar to [`AsRef`] but used for converting between mutable
/// references. If you need to do a costly conversion it is better to
/// implement [`From`] with type `&mut T` or write a custom function.
///
/// **Note: This trait must not fail**. If the conversion can fail, use a
/// dedicated method which returns an [`Option<T>`] or a [`Result<T, E>`].
///
/// # Generic Implementations
///
/// `AsMut` auto-dereferences if the inner type is a mutable reference
/// (e.g.: `foo.as_mut()` will work the same if `foo` has type `&mut Foo` or `&mut &mut Foo`).
///
/// Note that due to historic reasons, the above currently does not hold generally for all
/// [mutably dereferenceable types], e.g. `foo.as_mut()` will *not* work the same as
/// `Box::new(foo).as_mut()`. Instead, many smart pointers provide an `as_mut` implementation which
/// simply returns a reference to the [pointed-to value] (but do not perform a cheap
/// reference-to-reference conversion for that value). However, [`AsMut::as_mut`] should not be
/// used for the sole purpose of mutable dereferencing; instead ['`Deref` coercion'] can be used:
///
/// [mutably dereferenceable types]: core::ops::DerefMut
/// [pointed-to value]: core::ops::Deref::Target
/// ['`Deref` coercion']: core::ops::DerefMut#mutable-deref-coercion
///
/// ```
/// let mut x = Box::new(5i32);
/// // Avoid this:
/// // let y: &mut i32 = x.as_mut();
/// // Better just write:
/// let y: &mut i32 = &mut x;
/// ```
///
/// Types which implement [`DerefMut`] should consider to add an implementation of `AsMut<T>` as
/// follows:
///
/// [`DerefMut`]: core::ops::DerefMut
///
/// ```
/// # use core::ops::{Deref, DerefMut};
/// # struct SomeType;
/// # impl Deref for SomeType {
/// # type Target = [u8];
/// # fn deref(&self) -> &[u8] {
/// # &[]
/// # }
/// # }
/// # impl DerefMut for SomeType {
/// # fn deref_mut(&mut self) -> &mut [u8] {
/// # &mut []
/// # }
/// # }
/// impl<T> AsMut<T> for SomeType
/// where
/// <SomeType as Deref>::Target: AsMut<T>,
/// {
/// fn as_mut(&mut self) -> &mut T {
/// self.deref_mut().as_mut()
/// }
/// }
/// ```
///
/// # Reflexivity
///
/// Ideally, `AsMut` would be reflexive, i.e. there would be an `impl<T: ?Sized> AsMut<T> for T`
/// with [`as_mut`] simply returning its argument unchanged.
/// Such a blanket implementation is currently *not* provided due to technical restrictions of
/// Rust's type system (it would be overlapping with another existing blanket implementation for
/// `&mut T where T: AsMut<U>` which allows `AsMut` to auto-dereference, see "Generic
/// Implementations" above).
///
/// [`as_mut`]: AsMut::as_mut
///
/// A trivial implementation of `AsMut<T> for T` must be added explicitly for a particular type `T`
/// where needed or desired. Note, however, that not all types from `std` contain such an
/// implementation, and those cannot be added by external code due to orphan rules.
///
/// # Examples
///
/// Using `AsMut` as trait bound for a generic function, we can accept all mutable references that
/// can be converted to type `&mut T`. Unlike [dereference], which has a single [target type],
/// there can be multiple implementations of `AsMut` for a type. In particular, `Vec<T>` implements
/// both `AsMut<Vec<T>>` and `AsMut<[T]>`.
///
/// In the following, the example functions `caesar` and `null_terminate` provide a generic
/// interface which work with any type that can be converted by cheap mutable-to-mutable conversion
/// into a byte slice (`[u8]`) or byte vector (`Vec<u8>`), respectively.
///
/// [dereference]: core::ops::DerefMut
/// [target type]: core::ops::Deref::Target
///
/// ```
/// struct Document {
/// info: String,
/// content: Vec<u8>,
/// }
///
/// impl<T: ?Sized> AsMut<T> for Document
/// where
/// Vec<u8>: AsMut<T>,
/// {
/// fn as_mut(&mut self) -> &mut T {
/// self.content.as_mut()
/// }
/// }
///
/// fn caesar<T: AsMut<[u8]>>(data: &mut T, key: u8) {
/// for byte in data.as_mut() {
/// *byte = byte.wrapping_add(key);
/// }
/// }
///
/// fn null_terminate<T: AsMut<Vec<u8>>>(data: &mut T) {
/// // Using a non-generic inner function, which contains most of the
/// // functionality, helps to minimize monomorphization overhead.
/// fn doit(data: &mut Vec<u8>) {
/// let len = data.len();
/// if len == 0 || data[len-1] != 0 {
/// data.push(0);
/// }
/// }
/// doit(data.as_mut());
/// }
///
/// fn main() {
/// let mut v: Vec<u8> = vec![1, 2, 3];
/// caesar(&mut v, 5);
/// assert_eq!(v, [6, 7, 8]);
/// null_terminate(&mut v);
/// assert_eq!(v, [6, 7, 8, 0]);
/// let mut doc = Document {
/// info: String::from("Example"),
/// content: vec![17, 19, 8],
/// };
/// caesar(&mut doc, 1);
/// assert_eq!(doc.content, [18, 20, 9]);
/// null_terminate(&mut doc);
/// assert_eq!(doc.content, [18, 20, 9, 0]);
/// }
/// ```
///
/// Note, however, that APIs don't need to be generic. In many cases taking a `&mut [u8]` or
/// `&mut Vec<u8>`, for example, is the better choice (callers need to pass the correct type then).
#[stable(feature = "rust1", since = "1.0.0")]
#[cfg_attr(not(test), rustc_diagnostic_item = "AsMut")]
pub trait AsMut<T: ?Sized> {
/// Converts this type into a mutable reference of the (usually inferred) input type.
#[stable(feature = "rust1", since = "1.0.0")]
fn as_mut(&mut self) -> &mut T;
}
/// A value-to-value conversion that consumes the input value. The
/// opposite of [`From`].
///
/// One should avoid implementing [`Into`] and implement [`From`] instead.
/// Implementing [`From`] automatically provides one with an implementation of [`Into`]
/// thanks to the blanket implementation in the standard library.
///
/// Prefer using [`Into`] over [`From`] when specifying trait bounds on a generic function
/// to ensure that types that only implement [`Into`] can be used as well.
///
/// **Note: This trait must not fail**. If the conversion can fail, use [`TryInto`].
///
/// # Generic Implementations
///
/// - [`From`]`<T> for U` implies `Into<U> for T`
/// - [`Into`] is reflexive, which means that `Into<T> for T` is implemented
///
/// # Implementing [`Into`] for conversions to external types in old versions of Rust
///
/// Prior to Rust 1.41, if the destination type was not part of the current crate
/// then you couldn't implement [`From`] directly.
/// For example, take this code:
///
/// ```
/// # #![allow(non_local_definitions)]
/// struct Wrapper<T>(Vec<T>);
/// impl<T> From<Wrapper<T>> for Vec<T> {
/// fn from(w: Wrapper<T>) -> Vec<T> {
/// w.0
/// }
/// }
/// ```
/// This will fail to compile in older versions of the language because Rust's orphaning rules
/// used to be a little bit more strict. To bypass this, you could implement [`Into`] directly:
///
/// ```
/// struct Wrapper<T>(Vec<T>);
/// impl<T> Into<Vec<T>> for Wrapper<T> {
/// fn into(self) -> Vec<T> {
/// self.0
/// }
/// }
/// ```
///
/// It is important to understand that [`Into`] does not provide a [`From`] implementation
/// (as [`From`] does with [`Into`]). Therefore, you should always try to implement [`From`]
/// and then fall back to [`Into`] if [`From`] can't be implemented.
///
/// # Examples
///
/// [`String`] implements [`Into`]`<`[`Vec`]`<`[`u8`]`>>`:
///
/// In order to express that we want a generic function to take all arguments that can be
/// converted to a specified type `T`, we can use a trait bound of [`Into`]`<T>`.
/// For example: The function `is_hello` takes all arguments that can be converted into a
/// [`Vec`]`<`[`u8`]`>`.
///
/// ```
/// fn is_hello<T: Into<Vec<u8>>>(s: T) {
/// let bytes = b"hello".to_vec();
/// assert_eq!(bytes, s.into());
/// }
///
/// let s = "hello".to_string();
/// is_hello(s);
/// ```
///
/// [`String`]: ../../std/string/struct.String.html
/// [`Vec`]: ../../std/vec/struct.Vec.html
#[rustc_diagnostic_item = "Into"]
#[stable(feature = "rust1", since = "1.0.0")]
#[doc(search_unbox)]
pub trait Into<T>: Sized {
/// Converts this type into the (usually inferred) input type.
#[must_use]
#[stable(feature = "rust1", since = "1.0.0")]
fn into(self) -> T;
}
/// Used to do value-to-value conversions while consuming the input value. It is the reciprocal of
/// [`Into`].
///
/// One should always prefer implementing `From` over [`Into`]
/// because implementing `From` automatically provides one with an implementation of [`Into`]
/// thanks to the blanket implementation in the standard library.
///
/// Only implement [`Into`] when targeting a version prior to Rust 1.41 and converting to a type
/// outside the current crate.
/// `From` was not able to do these types of conversions in earlier versions because of Rust's
/// orphaning rules.
/// See [`Into`] for more details.
///
/// Prefer using [`Into`] over using `From` when specifying trait bounds on a generic function.
/// This way, types that directly implement [`Into`] can be used as arguments as well.
///
/// The `From` trait is also very useful when performing error handling. When constructing a function
/// that is capable of failing, the return type will generally be of the form `Result<T, E>`.
/// `From` simplifies error handling by allowing a function to return a single error type
/// that encapsulates multiple error types. See the "Examples" section and [the book][book] for more
/// details.
///
/// **Note: This trait must not fail**. The `From` trait is intended for perfect conversions.
/// If the conversion can fail or is not perfect, use [`TryFrom`].
///
/// # Generic Implementations
///
/// - `From<T> for U` implies [`Into`]`<U> for T`
/// - `From` is reflexive, which means that `From<T> for T` is implemented
///
/// # When to implement `From`
///
/// While there's no technical restrictions on which conversions can be done using
/// a `From` implementation, the general expectation is that the conversions
/// should typically be restricted as follows:
///
/// * The conversion is *infallible*: if the conversion can fail, use [`TryFrom`]
/// instead; don't provide a `From` impl that panics.
///
/// * The conversion is *lossless*: semantically, it should not lose or discard
/// information. For example, `i32: From<u16>` exists, where the original
/// value can be recovered using `u16: TryFrom<i32>`. And `String: From<&str>`
/// exists, where you can get something equivalent to the original value via
/// `Deref`. But `From` cannot be used to convert from `u32` to `u16`, since
/// that cannot succeed in a lossless way. (There's some wiggle room here for
/// information not considered semantically relevant. For example,
/// `Box<[T]>: From<Vec<T>>` exists even though it might not preserve capacity,
/// like how two vectors can be equal despite differing capacities.)
///
/// * The conversion is *value-preserving*: the conceptual kind and meaning of
/// the resulting value is the same, even though the Rust type and technical
/// representation might be different. For example `-1_i8 as u8` is *lossless*,
/// since `as` casting back can recover the original value, but that conversion
/// is *not* available via `From` because `-1` and `255` are different conceptual
/// values (despite being identical bit patterns technically). But
/// `f32: From<i16>` *is* available because `1_i16` and `1.0_f32` are conceptually
/// the same real number (despite having very different bit patterns technically).
/// `String: From<char>` is available because they're both *text*, but
/// `String: From<u32>` is *not* available, since `1` (a number) and `"1"`
/// (text) are too different. (Converting values to text is instead covered
/// by the [`Display`](crate::fmt::Display) trait.)
///
/// * The conversion is *obvious*: it's the only reasonable conversion between
/// the two types. Otherwise it's better to have it be a named method or
/// constructor, like how [`str::as_bytes`] is a method and how integers have
/// methods like [`u32::from_ne_bytes`], [`u32::from_le_bytes`], and
/// [`u32::from_be_bytes`], none of which are `From` implementations. Whereas
/// there's only one reasonable way to wrap an [`Ipv6Addr`](crate::net::Ipv6Addr)
/// into an [`IpAddr`](crate::net::IpAddr), thus `IpAddr: From<Ipv6Addr>` exists.
///
/// # Examples
///
/// [`String`] implements `From<&str>`:
///
/// An explicit conversion from a `&str` to a String is done as follows:
///
/// ```
/// let string = "hello".to_string();
/// let other_string = String::from("hello");
///
/// assert_eq!(string, other_string);
/// ```
///
/// While performing error handling it is often useful to implement `From` for your own error type.
/// By converting underlying error types to our own custom error type that encapsulates the
/// underlying error type, we can return a single error type without losing information on the
/// underlying cause. The '?' operator automatically converts the underlying error type to our
/// custom error type with `From::from`.
///
/// ```
/// use std::fs;
/// use std::io;
/// use std::num;
///
/// enum CliError {
/// IoError(io::Error),
/// ParseError(num::ParseIntError),
/// }
///
/// impl From<io::Error> for CliError {
/// fn from(error: io::Error) -> Self {
/// CliError::IoError(error)
/// }
/// }
///
/// impl From<num::ParseIntError> for CliError {
/// fn from(error: num::ParseIntError) -> Self {
/// CliError::ParseError(error)
/// }
/// }
///
/// fn open_and_parse_file(file_name: &str) -> Result<i32, CliError> {
/// let mut contents = fs::read_to_string(&file_name)?;
/// let num: i32 = contents.trim().parse()?;
/// Ok(num)
/// }
/// ```
///
/// [`String`]: ../../std/string/struct.String.html
/// [`from`]: From::from
/// [book]: ../../book/ch09-00-error-handling.html
#[rustc_diagnostic_item = "From"]
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_on_unimplemented(on(
all(_Self = "&str", T = "alloc::string::String"),
note = "to coerce a `{T}` into a `{Self}`, use `&*` as a prefix",
))]
#[doc(search_unbox)]
pub trait From<T>: Sized {
/// Converts to this type from the input type.
#[rustc_diagnostic_item = "from_fn"]
#[must_use]
#[stable(feature = "rust1", since = "1.0.0")]
fn from(value: T) -> Self;
}
/// An attempted conversion that consumes `self`, which may or may not be
/// expensive.
///
/// Library authors should usually not directly implement this trait,
/// but should prefer implementing the [`TryFrom`] trait, which offers
/// greater flexibility and provides an equivalent `TryInto`
/// implementation for free, thanks to a blanket implementation in the
/// standard library. For more information on this, see the
/// documentation for [`Into`].
///
/// # Implementing `TryInto`
///
/// This suffers the same restrictions and reasoning as implementing
/// [`Into`], see there for details.
#[rustc_diagnostic_item = "TryInto"]
#[stable(feature = "try_from", since = "1.34.0")]
pub trait TryInto<T>: Sized {
/// The type returned in the event of a conversion error.
#[stable(feature = "try_from", since = "1.34.0")]
type Error;
/// Performs the conversion.
#[stable(feature = "try_from", since = "1.34.0")]
fn try_into(self) -> Result<T, Self::Error>;
}
/// Simple and safe type conversions that may fail in a controlled
/// way under some circumstances. It is the reciprocal of [`TryInto`].
///
/// This is useful when you are doing a type conversion that may
/// trivially succeed but may also need special handling.
/// For example, there is no way to convert an [`i64`] into an [`i32`]
/// using the [`From`] trait, because an [`i64`] may contain a value
/// that an [`i32`] cannot represent and so the conversion would lose data.
/// This might be handled by truncating the [`i64`] to an [`i32`] or by
/// simply returning [`i32::MAX`], or by some other method. The [`From`]
/// trait is intended for perfect conversions, so the `TryFrom` trait
/// informs the programmer when a type conversion could go bad and lets
/// them decide how to handle it.
///
/// # Generic Implementations
///
/// - `TryFrom<T> for U` implies [`TryInto`]`<U> for T`
/// - [`try_from`] is reflexive, which means that `TryFrom<T> for T`
/// is implemented and cannot fail -- the associated `Error` type for
/// calling `T::try_from()` on a value of type `T` is [`Infallible`].
/// When the [`!`] type is stabilized [`Infallible`] and [`!`] will be
/// equivalent.
///
/// `TryFrom<T>` can be implemented as follows:
///
/// ```
/// struct GreaterThanZero(i32);
///
/// impl TryFrom<i32> for GreaterThanZero {
/// type Error = &'static str;
///
/// fn try_from(value: i32) -> Result<Self, Self::Error> {
/// if value <= 0 {
/// Err("GreaterThanZero only accepts values greater than zero!")
/// } else {
/// Ok(GreaterThanZero(value))
/// }
/// }
/// }
/// ```
///
/// # Examples
///
/// As described, [`i32`] implements `TryFrom<`[`i64`]`>`:
///
/// ```
/// let big_number = 1_000_000_000_000i64;
/// // Silently truncates `big_number`, requires detecting
/// // and handling the truncation after the fact.
/// let smaller_number = big_number as i32;
/// assert_eq!(smaller_number, -727379968);
///
/// // Returns an error because `big_number` is too big to
/// // fit in an `i32`.
/// let try_smaller_number = i32::try_from(big_number);
/// assert!(try_smaller_number.is_err());
///
/// // Returns `Ok(3)`.
/// let try_successful_smaller_number = i32::try_from(3);
/// assert!(try_successful_smaller_number.is_ok());
/// ```
///
/// [`try_from`]: TryFrom::try_from
#[rustc_diagnostic_item = "TryFrom"]
#[stable(feature = "try_from", since = "1.34.0")]
pub trait TryFrom<T>: Sized {
/// The type returned in the event of a conversion error.
#[stable(feature = "try_from", since = "1.34.0")]
type Error;
/// Performs the conversion.
#[stable(feature = "try_from", since = "1.34.0")]
#[rustc_diagnostic_item = "try_from_fn"]
fn try_from(value: T) -> Result<Self, Self::Error>;
}
////////////////////////////////////////////////////////////////////////////////
// GENERIC IMPLS
////////////////////////////////////////////////////////////////////////////////
// As lifts over &
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized, U: ?Sized> AsRef<U> for &T
where
T: AsRef<U>,
{
#[inline]
fn as_ref(&self) -> &U {
<T as AsRef<U>>::as_ref(*self)
}
}
// As lifts over &mut
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized, U: ?Sized> AsRef<U> for &mut T
where
T: AsRef<U>,
{
#[inline]
fn as_ref(&self) -> &U {
<T as AsRef<U>>::as_ref(*self)
}
}
// FIXME (#45742): replace the above impls for &/&mut with the following more general one:
// // As lifts over Deref
// impl<D: ?Sized Deref<Target: AsRef<U>>, U: ?Sized> AsRef<U> for D {
// fn as_ref(&self) -> &U {
// self.deref().as_ref()
// }
// }
// AsMut lifts over &mut
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized, U: ?Sized> AsMut<U> for &mut T
where
T: AsMut<U>,
{
#[inline]
fn as_mut(&mut self) -> &mut U {
(*self).as_mut()
}
}
// FIXME (#45742): replace the above impl for &mut with the following more general one:
// // AsMut lifts over DerefMut
// impl<D: ?Sized Deref<Target: AsMut<U>>, U: ?Sized> AsMut<U> for D {
// fn as_mut(&mut self) -> &mut U {
// self.deref_mut().as_mut()
// }
// }
// From implies Into
#[stable(feature = "rust1", since = "1.0.0")]
impl<T, U> Into<U> for T
where
U: From<T>,
{
/// Calls `U::from(self)`.
///
/// That is, this conversion is whatever the implementation of
/// <code>[From]<T> for U</code> chooses to do.
#[inline]
#[track_caller]
fn into(self) -> U {
U::from(self)
}
}
// From (and thus Into) is reflexive
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> From<T> for T {
/// Returns the argument unchanged.
#[inline(always)]
fn from(t: T) -> T {
t
}
}
/// **Stability note:** This impl does not yet exist, but we are
/// "reserving space" to add it in the future. See
/// [rust-lang/rust#64715][#64715] for details.
///
/// [#64715]: https://github.com/rust-lang/rust/issues/64715
#[stable(feature = "convert_infallible", since = "1.34.0")]
#[allow(unused_attributes)] // FIXME(#58633): do a principled fix instead.
#[rustc_reservation_impl = "permitting this impl would forbid us from adding \
`impl<T> From<!> for T` later; see rust-lang/rust#64715 for details"]
impl<T> From<!> for T {
fn from(t: !) -> T {
t
}
}
// TryFrom implies TryInto
#[stable(feature = "try_from", since = "1.34.0")]
impl<T, U> TryInto<U> for T
where
U: TryFrom<T>,
{
type Error = U::Error;
#[inline]
fn try_into(self) -> Result<U, U::Error> {
U::try_from(self)
}
}
// Infallible conversions are semantically equivalent to fallible conversions
// with an uninhabited error type.
#[stable(feature = "try_from", since = "1.34.0")]
impl<T, U> TryFrom<U> for T
where
U: Into<T>,
{
type Error = Infallible;
#[inline]
fn try_from(value: U) -> Result<Self, Self::Error> {
Ok(U::into(value))
}
}
////////////////////////////////////////////////////////////////////////////////
// CONCRETE IMPLS
////////////////////////////////////////////////////////////////////////////////
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> AsRef<[T]> for [T] {
#[inline(always)]
fn as_ref(&self) -> &[T] {
self
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> AsMut<[T]> for [T] {
#[inline(always)]
fn as_mut(&mut self) -> &mut [T] {
self
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl AsRef<str> for str {
#[inline(always)]
fn as_ref(&self) -> &str {
self
}
}
#[stable(feature = "as_mut_str_for_str", since = "1.51.0")]
impl AsMut<str> for str {
#[inline(always)]
fn as_mut(&mut self) -> &mut str {
self
}
}
////////////////////////////////////////////////////////////////////////////////
// THE NO-ERROR ERROR TYPE
////////////////////////////////////////////////////////////////////////////////
/// The error type for errors that can never happen.
///
/// Since this enum has no variant, a value of this type can never actually exist.
/// This can be useful for generic APIs that use [`Result`] and parameterize the error type,
/// to indicate that the result is always [`Ok`].
///
/// For example, the [`TryFrom`] trait (conversion that returns a [`Result`])
/// has a blanket implementation for all types where a reverse [`Into`] implementation exists.
///
/// ```ignore (illustrates std code, duplicating the impl in a doctest would be an error)
/// impl<T, U> TryFrom<U> for T where U: Into<T> {
/// type Error = Infallible;
///
/// fn try_from(value: U) -> Result<Self, Infallible> {
/// Ok(U::into(value)) // Never returns `Err`
/// }
/// }
/// ```
///
/// # Future compatibility
///
/// This enum has the same role as [the `!` “never” type][never],
/// which is unstable in this version of Rust.
/// When `!` is stabilized, we plan to make `Infallible` a type alias to it:
///
/// ```ignore (illustrates future std change)
/// pub type Infallible = !;
/// ```
///
/// … and eventually deprecate `Infallible`.
///
/// However there is one case where `!` syntax can be used
/// before `!` is stabilized as a full-fledged type: in the position of a function’s return type.
/// Specifically, it is possible to have implementations for two different function pointer types:
///
/// ```
/// trait MyTrait {}
/// impl MyTrait for fn() -> ! {}
/// impl MyTrait for fn() -> std::convert::Infallible {}
/// ```
///
/// With `Infallible` being an enum, this code is valid.
/// However when `Infallible` becomes an alias for the never type,
/// the two `impl`s will start to overlap
/// and therefore will be disallowed by the language’s trait coherence rules.
#[stable(feature = "convert_infallible", since = "1.34.0")]
#[derive(Copy)]
pub enum Infallible {}
#[stable(feature = "convert_infallible", since = "1.34.0")]
impl Clone for Infallible {
fn clone(&self) -> Infallible {
match *self {}
}
}
#[stable(feature = "convert_infallible", since = "1.34.0")]
impl fmt::Debug for Infallible {
fn fmt(&self, _: &mut fmt::Formatter<'_>) -> fmt::Result {
match *self {}
}
}
#[stable(feature = "convert_infallible", since = "1.34.0")]
impl fmt::Display for Infallible {
fn fmt(&self, _: &mut fmt::Formatter<'_>) -> fmt::Result {
match *self {}
}
}
#[stable(feature = "str_parse_error2", since = "1.8.0")]
impl Error for Infallible {
fn description(&self) -> &str {
match *self {}
}
}
#[stable(feature = "convert_infallible", since = "1.34.0")]
impl PartialEq for Infallible {
fn eq(&self, _: &Infallible) -> bool {
match *self {}
}
}
#[stable(feature = "convert_infallible", since = "1.34.0")]
impl Eq for Infallible {}
#[stable(feature = "convert_infallible", since = "1.34.0")]
impl PartialOrd for Infallible {
fn partial_cmp(&self, _other: &Self) -> Option<crate::cmp::Ordering> {
match *self {}
}
}
#[stable(feature = "convert_infallible", since = "1.34.0")]
impl Ord for Infallible {
fn cmp(&self, _other: &Self) -> crate::cmp::Ordering {
match *self {}
}
}
#[stable(feature = "convert_infallible", since = "1.34.0")]
impl From<!> for Infallible {
#[inline]
fn from(x: !) -> Self {
x
}
}
#[stable(feature = "convert_infallible_hash", since = "1.44.0")]
impl Hash for Infallible {
fn hash<H: Hasher>(&self, _: &mut H) {
match *self {}
}
}