F. A. Zafiropoulos, T. N. Grapsa, O. Ragos, and M. N. Vrahatis (1996)On the Computation of Zeros of Bessel and Bessel-related Functions.
In Proceedings of the Sixth International Colloquium on
Differential Equations (Plovdiv, Bulgaria, 1995), D. Bainov (Ed.),
Utrecht, pp. 409–416.
M. R. Zaghloul (2016)Remark on “Algorithm 916: computing the Faddeyeva and Voigt functions”: efficiency improvements and Fortran translation.
ACM Trans. Math. Softw.42 (3), pp. 26:1–26:9.
ⓘ
Notes:
Includes MATLAB and Fortran programs claiming 6S or 13S accuracy for single and double precision
M. R. Zaghloul (2017)Algorithm 985: Simple, Efficient, and Relatively Accurate Approximation for the Evaluation of the Faddeyeva Function.
ACM Trans. Math. Softw.44 (2), pp. 22:1–22:9.
D. Zagier (1989)The Dilogarithm Function in Geometry and Number Theory.
In Number Theory and Related Topics (Bombay, 1988), R. Askey and others (Eds.),
Tata Inst. Fund. Res. Stud. Math., Vol. 12, pp. 231–249.
R. Zanovello (1978)Su un integrale definito del prodotto di due funzioni di Struve.
Atti Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur.112 (1-2), pp. 63–81 (Italian).
A. Zarzo, J. S. Dehesa, and R. J. Yañez (1995)Distribution of zeros of Gauss and Kummer hypergeometric functions. A semiclassical approach.
Ann. Numer. Math.2 (1-4), pp. 457–472.
Zeilberger (website)
Doron Zeilberger’s Maple Packages and Programs
Department of Mathematics, Rutgers University, New Jersey.
ⓘ
Notes:
Includes hypergeometric and -hypergeometric summation, solution of
difference equations (for example, by Petkovšek’s algorithm),
combinatorial algorithms, and (package LUC) evaluation of zonal
polynomials.
J. M. Zhang, X. C. Li, and C. K. Qu (1996)Error bounds for asymptotic solutions of second-order linear difference equations.
J. Comput. Appl. Math.71 (2), pp. 191–212.
J. Zhang and J. A. Belward (1997)Chebyshev series approximations for the Bessel function of complex argument.
Appl. Math. Comput.88 (2-3), pp. 275–286.
S. Zhang and J. Jin (1996)Computation of Special Functions.
John Wiley & Sons Inc., New York.
ⓘ
Notes:
Includes diskette containing
a large collection of mathematical function software written in Fortran.
Implementation in double precision. Maximum accuracy 16S.
A. Zhedanov (1998)On some classes of polynomials orthogonal on arcs of the unit circle connected with symmetric orthogonal polynomials on an interval.
J. Approx. Theory94 (1), pp. 73–106.
C. H. Ziener, M. Rückl, T. Kampf, W. R. Bauer, and H. P. Schlemmer (2012)Mathieu functions for purely imaginary parameters.
J. Comput. Appl. Math.236 (17), pp. 4513–4524.
M. I. Žurina and L. N. Karmazina (1964)Tables of the Legendre functions . Part I.
Translated by D. E. Brown. Mathematical Tables Series, Vol.
22, Pergamon Press, Oxford.
ⓘ
Notes:
Translation of Žurina and Karmazina,
Tablitsy funktsii Lezhandra . Tom I,
Izdat. Akad. Nauk SSSR, Moscow, 1960.
M. I. Žurina and L. N. Karmazina (1965)Tables of the Legendre functions . Part II.
Translated by Prasenjit Basu. Mathematical Tables Series, Vol.
38. A Pergamon Press Book, The Macmillan Co., New York.
ⓘ
Notes:
Translation of Žurina and Karmazina,
Tablitsy funktsii Lezhandra . Tom II,
Izdat. Akad. Nauk SSSR, Moscow, 1962.