L. G. Cabral-Rosetti and M. A. Sanchis-Lozano (2000)Generalized hypergeometric functions and the evaluation of scalar one-loop integrals in Feynman diagrams.
J. Comput. Appl. Math.115 (1-2), pp. 93–99.
F. Calogero (1978)Asymptotic behaviour of the zeros of the (generalized) Laguerre polynomial as the index and limiting formula relating Laguerre polynomials of large index and large argument to Hermite polynomials.
Lett. Nuovo Cimento (2)23 (3), pp. 101–102.
R. Campbell (1955)Théorie Générale de L’Équation de Mathieu et de quelques autres Équations différentielles de la mécanique.
Masson et Cie, Paris (French).
CAOP (website)Work Group of Computational Mathematics, University of Kassel, Germany.
ⓘ
Notes:
Computer Algebra and Orthogonal Polynomials: a Web service using Maple for online
generation of formulas and graphs of orthogonal polynomials belonging to the
Askey scheme. For further information see Swarttouw (1997) and
Koepf (1999).
B. C. Carlson and J. FitzSimons (2000)Reduction theorems for elliptic integrands with the square root of two quadratic factors.
J. Comput. Appl. Math.118 (1-2), pp. 71–85.
ⓘ
Notes:
Code written by the second author to compute symmetric elliptic integrals
numerically in the Derive computer algebra system is available.
B. C. Carlson (1985)The hypergeometric function and the -function near their branch points.
Rend. Sem. Mat. Univ. Politec. Torino (Special Issue), pp. 63–89.
ⓘ
Notes:
International conference on special functions: theory and
computation (Turin, 1984)
B. C. Carlson (1990)Landen Transformations of Integrals.
In Asymptotic and Computational Analysis (Winnipeg, MB, 1989), R. Wong (Ed.),
Lecture Notes in Pure and Appl. Math., Vol. 124, pp. 75–94.
B. C. Carlson (2006b)Table of integrals of squared Jacobian elliptic functions and reductions of related hypergeometric -functions.
Math. Comp.75 (255), pp. 1309–1318.
B. C. Carlson (1998)Elliptic Integrals: Symmetry and Symbolic Integration.
In Tricomi’s Ideas and Contemporary Applied Mathematics
(Rome/Turin, 1997),
Atti dei Convegni Lincei, Vol. 147, pp. 161–181.
M. Carmignani and A. Tortorici Macaluso (1985)Calcolo delle funzioni speciali , , , , alle alte precisioni.
Atti Accad. Sci. Lett. Arti Palermo Ser. (5)2(1981/82) (1), pp. 7–25 (Italian).
ⓘ
Notes:
Translated title: Computation of the special functions
to a high degree of precision
L. D. Carr, C. W. Clark, and W. P. Reinhardt (2000)Stationary solutions of the one-dimensional nonlinear Schrödinger equation. I. Case of repulsive nonlinearity.
Phys. Rev. A62 (063610), pp. 1–10.
J. R. Cash and R. V. M. Zahar (1994)A Unified Approach to Recurrence Algorithms.
In Approximation and Computation (West Lafayette, IN, 1993), R. V. M. Zahar (Ed.),
International Series of Computational Mathematics, Vol. 119, pp. 97–120.
R. Cazenave (1969)Intégrales et Fonctions Elliptiques en Vue des Applications.
Préface de Henri Villat. Publications Scientifiques et
Techniques du Ministère de l’Air, No. 452, Centre de Documentation de l’Armement, Paris.
This library treats about 180 different mathematical
functions, including a substantial collection of probability integrals, Bessel
functions, and higher transcendental functions. Implementations in single,
double, and quad precisions are provided.
See Moshier (1989).
C. Cerjan (Ed.) (1993)Numerical Grid Methods and Their Application to Schrödinger’s Equation.
NATO Advanced Science Institutes Series C: Mathematical and
Physical Sciences, Vol. 412, Kluwer Academic Publishers, Dordrecht.
F. Chapeau-Blondeau and A. Monir (2002)Numerical evaluation of the Lambert function and application to generation of generalized Gaussian noise with exponent 1/2.
IEEE Trans. Signal Process.50 (9), pp. 2160–2165.
M. A. Chaudhry, N. M. Temme, and E. J. M. Veling (1996)Asymptotics and closed form of a generalized incomplete gamma function.
J. Comput. Appl. Math.67 (2), pp. 371–379.
P. L. Chebyshev (1851)Sur la fonction qui détermine la totalité des nombres premiers inférieurs à une limite donnée.
Mem. Ac. Sc. St. Pétersbourg6, pp. 141–157.
J. Chen (1966)On the representation of a large even integer as the sum of a prime and the product of at most two primes.
Kexue Tongbao (Foreign Lang. Ed.)17, pp. 385–386.
C. Chiccoli, S. Lorenzutta, and G. Maino (1990b)On a Tricomi series representation for the generalized exponential integral.
Internat. J. Comput. Math.31, pp. 257–262.
T. S. Chihara (1978)An Introduction to Orthogonal Polynomials.
Mathematics and its Applications, Vol. 13, Gordon and Breach Science Publishers, New York.
R. C. Y. Chin and G. W. Hedstrom (1978)A dispersion analysis for difference schemes: Tables of generalized Airy functions.
Math. Comp.32 (144), pp. 1163–1170.
J. Choi and A. K. Rathie (2013)An extension of a Kummer’s quadratic transformation formula with an application.
Proc. Jangjeon Math. Soc.16 (2), pp. 229–235.
G. Chrystal (1959a)Algebra: An Elementary Textbook for the Higher Classes of Secondary Schools and for Colleges.
6th edition, Vol. 1, Chelsea Publishing Co., New York.
ⓘ
Notes:
A seventh edition (reprinting of the sixth edition) was published by
AMS Chelsea Publishing Series, American Mathematical Society, 1964.
G. Chrystal (1959b)Algebra: An Elementary Textbook for the Higher Classes of Secondary Schools and for Colleges.
6th edition, Vol. 2, Chelsea Publishing Co., New York.
ⓘ
Notes:
A seventh edition (reprinting of the sixth edition) was published by
AMS Chelsea Publishing Series, American Mathematical Society, 1964.
D. V. Chudnovsky and G. V. Chudnovsky (1988)Approximations and Complex Multiplication According to Ramanujan.
In Ramanujan Revisited (Urbana-Champaign, Ill., 1987), G. E. Andrews, R. A. Askey, B. C. Bernd, K. G. Ramanathan, and R. A. Rankin (Eds.),
pp. 375–472.
C. K. Chui (1988)Multivariate Splines.
CBMS-NSF Regional Conference Series in Applied Mathematics, Vol. 54, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA.
A. Ciarkowski (1989)Uniform asymptotic expansion of an integral with a saddle point, a pole and a branch point.
Proc. Roy. Soc. London Ser. A426, pp. 273–286.
R. Cicchetti and A. Faraone (2004)Incomplete Hankel and modified Bessel functions: A class of special functions for electromagnetics.
IEEE Trans. Antennas and Propagation52 (12), pp. 3373–3389.
G. M. Cicuta and E. Montaldi (1975)Remarks on the full asymptotic expansion of Feynman parametrized integrals.
Lett. Nuovo Cimento (2)13 (8), pp. 310–312.
P. A. Clarkson and E. L. Mansfield (2003)The second Painlevé equation, its hierarchy and associated special polynomials.
Nonlinearity16 (3), pp. R1–R26.
P. A. Clarkson (1991)Nonclassical Symmetry Reductions and Exact Solutions for Physically Significant Nonlinear Evolution Equations.
In Nonlinear and Chaotic Phenomena in Plasmas, Solids and Fluids
(Edmonton, AB, 1990), W. Rozmus and J. A. Tuszynski (Eds.),
pp. 72–79.
P. A. Clarkson (2005)Special polynomials associated with rational solutions of the fifth Painlevé equation.
J. Comput. Appl. Math.178 (1-2), pp. 111–129.
P. A. Clarkson (2006)Painlevé Equations—Nonlinear Special Functions: Computation and Application.
In Orthogonal Polynomials and Special Functions, F. Marcellàn and W. van Assche (Eds.),
Lecture Notes in Math., Vol. 1883, pp. 331–411.
C. W. Clenshaw, D. W. Lozier, F. W. J. Olver, and P. R. Turner (1986)Generalized exponential and logarithmic functions.
Comput. Math. Appl. Part B12 (5-6), pp. 1091–1101.
C. W. Clenshaw, F. W. J. Olver, and P. R. Turner (1989)Level-Index Arithmetic: An Introductory Survey.
In Numerical Analysis and Parallel Processing (Lancaster, 1987), P. R. Turner (Ed.),
Lecture Notes in Math., Vol. 1397, pp. 95–168.
C. W. Clenshaw (1962)Chebyshev Series for Mathematical Functions.
National Physical Laboratory Mathematical Tables, Vol. 5.
Department of Scientific and Industrial Research, Her Majesty’s Stationery Office, London.
J. A. Cochran (1963)Further formulas for calculating approximate values of the zeros of certain combinations of Bessel functions.
IEEE Trans. Microwave Theory Tech.11 (6), pp. 546–547.
W. J. Cody (1993b)Algorithm 715: SPECFUN – A portable FORTRAN package of special function routines and test drivers.
ACM Trans. Math. Software19 (1), pp. 22–32.
H. S. Cohl, J. Park, and H. Volkmer (2021)Gauss hypergeometric representations of the Ferrers function of the second kind.
SIGMA Symmetry Integrability Geom. Methods Appl.17, pp. Paper 053, 33.
H. S. Cohl (2010)Derivatives with respect to the degree and order of associated Legendre functions for using modified Bessel functions.
Integral Transforms Spec. Funct.21 (7-8), pp. 581–588.
H. S. Cohl (2011)On parameter differentiation for integral representations of associated Legendre functions.
SIGMA Symmetry Integrability Geom. Methods Appl.7, pp. Paper 050, 16.
H. S. Cohl (2013a)Fourier, Gegenbauer and Jacobi expansions for a power-law fundamental solution of the polyharmonic equation and polyspherical addition theorems.
SIGMA Symmetry Integrability Geom. Methods Appl.9, pp. Paper 042, 26.
L. Collatz (1960)The Numerical Treatment of Differential Equations.
3rd edition, Die Grundlehren der Mathematischen Wissenschaften, Vol. 60, Springer, Berlin.
ⓘ
Notes:
Translated by P. G. Williams from a supplemented version of
the 2d German edition
D. Colton and R. Kress (1998)Inverse Acoustic and Electromagnetic Scattering Theory.
2nd edition, Applied Mathematical Sciences, Vol. 93, Springer-Verlag, Berlin.
W. C. Connett, C. Markett, and A. L. Schwartz (1993)Product formulas and convolutions for angular and radial spheroidal wave functions.
Trans. Amer. Math. Soc.338 (2), pp. 695–710.
J. N. L. Connor, P. R. Curtis, and D. Farrelly (1983)A differential equation method for the numerical evaluation of the Airy, Pearcey and swallowtail canonical integrals and their derivatives.
Molecular Phys.48 (6), pp. 1305–1330.
J. N. L. Connor and P. R. Curtis (1982)A method for the numerical evaluation of the oscillatory integrals associated with the cuspoid catastrophes: Application to Pearcey’s integral and its derivatives.
J. Phys. A15 (4), pp. 1179–1190.
J. N. L. Connor and D. Farrelly (1981)Molecular collisions and cusp catastrophes: Three methods for the calculation of Pearcey’s integral and its derivatives.
Chem. Phys. Lett.81 (2), pp. 306–310.
J. N. L. Connor and D. C. Mackay (1979)Calculation of angular distributions in complex angular momentum theories of elastic scattering.
Molecular Physics37 (6), pp. 1703–1712.
R. M. Corless, D. J. Jeffrey, and H. Rasmussen (1992)Numerical evaluation of Airy functions with complex arguments.
J. Comput. Phys.99 (1), pp. 106–114.
R. M. Corless, D. J. Jeffrey, and D. E. Knuth (1997)A sequence of series for the Lambert function.
In Proceedings of the 1997 International Symposium on
Symbolic and Algebraic Computation (Kihei, HI),
pp. 197–204.
M. S. Costa, E. Godoy, R. L. Lamblém, and A. Sri Ranga (2012)Basic hypergeometric functions and orthogonal Laurent polynomials.
Proc. Amer. Math. Soc.140 (6), pp. 2075–2089.
A. Cruz, J. Esparza, and J. Sesma (1991)Zeros of the Hankel function of real order out of the principal Riemann sheet.
J. Comput. Appl. Math.37 (1-3), pp. 89–99.
A. R. Curtis (1964b)Tables of Jacobian Elliptic Functions Whose Arguments are Rational Fractions of the Quarter Period.
National Physical Laboratory Mathematical Tables, Vol. 7, Her Majesty’s Stationery Office, London.
A. Cuyt, V. Petersen, B. Verdonk, H. Waadeland, W. B. Jones, and C. Bonan-Hamada (2007)Handbook of Continued Fractions for Special Functions.
Kluwer Academic Publishers Group, Dordrecht.
H. L. Cycon, R. G. Froese, W. Krisch, and B. Simon (2008)Schrödinger Operators, with Applications to Quantum Mechanics and Global Geometry.
Springer Verlag, New York.