About the Project
29 Lamé FunctionsLamé Polynomials

§29.15 Fourier Series and Chebyshev Series

Contents
  1. §29.15(i) Fourier Coefficients
  2. §29.15(ii) Chebyshev Series

§29.15(i) Fourier Coefficients

Polynomial 𝑢𝐸2nm(z,k2)

When ν=2n, m=0,1,,n, the Fourier series (29.6.1) terminates:

29.15.1 𝑢𝐸2nm(z,k2)=12A0 p=1nA2pcos(2pϕ).

A convenient way of constructing the coefficients, together with the eigenvalues, is as follows. Equations (29.6.4), with p=1,2,,n, (29.6.3), and A2n 2=0 can be cast as an algebraic eigenvalue problem in the following way. Let

29.15.2 𝐌=[β0α000γ1β1α100γn1βn1αn100γnβn]

be the tridiagonal matrix with αp, βp, γp as in (29.3.11), (29.3.12). Let the eigenvalues of 𝐌 be Hp with

29.15.3 H0<H1<<Hn,

and also let

29.15.4 [A0,A2,,A2n]T

be the eigenvector corresponding to Hm and normalized so that

29.15.5 12A02 p=1nA2p2=1

and

29.15.6 12A0 p=1nA2p>0.

Then

29.15.7 aν2m(k2)=12(Hm ν(ν 1)k2),

and (29.15.1) applies, with ϕ again defined as in (29.2.5).

Polynomial 𝑠𝐸2n 1m(z,k2)

When ν=2n 1, m=0,1,,n, the Fourier series (29.6.16) terminates:

29.15.8 𝑠𝐸2n 1m(z,k2)=p=0nA2p 1cos((2p 1)ϕ).

In (29.15.2) replace αp, βp, and γp as in (29.3.13), (29.3.14). Also, replace (29.15.4), (29.15.5), (29.15.6) by

29.15.9 [A1,A3,,A2n 1]T,
29.15.10 p=0nA2p 12=1,
29.15.11 p=0nA2p 1>0.

Then

29.15.12 aν2m 1(k2)=12(Hm ν(ν 1)k2),

and (29.15.8) applies.

Polynomial 𝑐𝐸2n 1m(z,k2)

When ν=2n 1, m=0,1,,n, the Fourier series (29.6.31) terminates:

29.15.13 𝑐𝐸2n 1m(z,k2)=p=0nB2p 1sin((2p 1)ϕ).

In (29.15.2) replace αp, βp, and γp as in (29.3.15), (29.3.16). Also, replace (29.15.4), (29.15.5), (29.15.6) by

29.15.14 [B1,B3,,B2n 1]T,
29.15.15 p=0nB2p 12=1,
29.15.16 p=0n(2p 1)B2p 1>0.

Then

29.15.17 bν2m 1(k2)=12(Hm ν(ν 1)k2),

and (29.15.13) applies.

Polynomial 𝑑𝐸2n 1m(z,k2)

When ν=2n 1, m=0,1,,n, the Fourier series (29.6.8) terminates:

29.15.18 𝑑𝐸2n 1m(z,k2)=dn(z,k)(12C0 p=1nC2pcos(2pϕ)).

In (29.15.2) replace αp, βp, and γp as in (29.6.11). Also, replace (29.15.4), (29.15.5), (29.15.6) by

29.15.19 [C0,C2,,C2n]T,
29.15.20 (112k2)(12C02 p=1nC2p2)12k2p=0n1C2pC2p 2=1,
29.15.21 12C0 p=1nC2p>0.

Then

29.15.22 aν2m(k2)=12(Hm ν(ν 1)k2),

and (29.15.18) applies.

Polynomial 𝑠𝑐𝐸2n 2m(z,k2)

When ν=2n 2, m=0,1,,n, the Fourier series (29.6.46) terminates:

29.15.23 𝑠𝑐𝐸2n 2m(z,k2)=p=0nB2p 2sin((2p 2)ϕ).

In (29.15.2) replace αp, βp, and γp as in (29.3.17). Also replace (29.15.4), (29.15.5), (29.15.6) by

29.15.24 [B2,B4,,B2n 2]T,
29.15.25 p=0nB2p 22=1,
29.15.26 p=0n(2p 2)B2p 2>0.

Then

29.15.27 bν2m 2(k2)=12(Hm ν(ν 1)k2),

and (29.15.23) applies.

Polynomial 𝑠𝑑𝐸2n 2m(z,k2)

When ν=2n 2, m=0,1,,n, the Fourier series (29.6.23) terminates:

29.15.28 𝑠𝑑𝐸2n 2m(z,k2)=dn(z,k)p=0nC2p 1cos((2p 1)ϕ).

In (29.15.2) replace αp, βp, and γp as in (29.6.26). Also replace (29.15.4), (29.15.5), (29.15.6) by

29.15.29 [C1,C3,,C2n 1]T,
29.15.30 (112k2)p=0nC2p 1212k2(12C12 p=0n1C2p 1C2p 3)=1,
29.15.31 p=0nC2p 1>0.

Then

29.15.32 aν2m 1(k2)=12(Hm ν(ν 1)k2),

and (29.15.28) applies.

Polynomial 𝑐𝑑𝐸2n 2m(z,k2)

When ν=2n 2, m=0,1,,n, the Fourier series (29.6.38) terminates:

29.15.33 𝑐𝑑𝐸2n 2m(z,k2)=dn(z,k)p=0nD2p 1sin((2p 1)ϕ).

In (29.15.2) replace αp, βp, and γp as in (29.6.41). Also replace (29.15.4), (29.15.5), (29.15.6) by

29.15.34 [D1,D3,,D2n 1]T,
29.15.35 (112k2)p=0nD2p 12 12k2(12D12p=0n1D2p 1D2p 3)=1,
29.15.36 p=0n(2p 1)D2p 1>0.

Then

29.15.37 bν2m 1(k2)=12(Hm ν(ν 1)k2),

and (29.15.33) applies.

Polynomial 𝑠𝑐𝑑𝐸2n 3m(z,k2)

When ν=2n 3, m=0,1,,n, the Fourier series (29.6.53) terminates:

29.15.38 𝑠𝑐𝑑𝐸2n 3m(z,k2)=dn(z,k)p=0nD2p 2sin((2p 2)ϕ).

In (29.15.2) replace αp, βp, and γp as in (29.6.56). Also replace (29.15.4), (29.15.5), (29.15.6) by

29.15.39 [D2,D4,,D2n 2]T,
29.15.40 (112k2)p=0nD2p 2212k2p=1nD2pD2p 2=1,
29.15.41 p=0n(2p 2)D2p 2>0.

Then

29.15.42 bν2m 2(k2)=12(Hm ν(ν 1)k2),

and (29.15.38) applies.

§29.15(ii) Chebyshev Series

The Chebyshev polynomial T of the first kind (§18.3) satisfies cos(pϕ)=Tp(cosϕ). Since (29.2.5) implies that cosϕ=sn(z,k), (29.15.1) can be rewritten in the form

29.15.43 𝑢𝐸2nm(z,k2)=12A0 p=1nA2pT2p(sn(z,k)).

This determines the polynomial P of degree n for which 𝑢𝐸2nm(z,k2)=P(sn2(z,k)); compare Table 29.12.1. The set of coefficients of this polynomial (without normalization) can also be found directly as an eigenvector of an (n 1)×(n 1) tridiagonal matrix; see Arscott and Khabaza (1962).

Using also sin((p 1)ϕ)=(sinϕ)Up(cosϕ), with U denoting the Chebyshev polynomial of the second kind (§18.3), we obtain

29.15.44 𝑠𝐸2n 1m(z,k2) =p=0nA2p 1T2p 1(sn(z,k)),
29.15.45 𝑐𝐸2n 1m(z,k2) =cn(z,k)p=0nB2p 1U2p(sn(z,k)),
29.15.46 𝑑𝐸2n 1m(z,k2) =dn(z,k)(12C0 p=1nC2pT2p(sn(z,k))),
29.15.47 𝑠𝑐𝐸2n 2m(z,k2) =cn(z,k)p=0nB2p 2U2p 1(sn(z,k)),
29.15.48 𝑠𝑑𝐸2n 2m(z,k2) =dn(z,k)p=0nC2p 1T2p 1(sn(z,k)),
29.15.49 𝑐𝑑𝐸2n 2m(z,k2) =cn(z,k)dn(z,k)p=0nD2p 1U2p(sn(z,k)),
29.15.50 𝑠𝑐𝑑𝐸2n 3m(z,k2) =cn(z,k)dn(z,k)p=0nD2p 2U2p 1(sn(z,k)).

For explicit formulas for Lamé polynomials of low degree, see Arscott (1964b, p. 205).