About the Project
22 Jacobian Elliptic FunctionsProperties

§22.8 Addition Theorems

Contents
  1. §22.8(i) Sum of Two Arguments
  2. §22.8(ii) Alternative Forms for Sum of Two Arguments
  3. §22.8(iii) Special Relations Between Arguments

§22.8(i) Sum of Two Arguments

For u,v, and with the common modulus k suppressed:

22.8.1 sn(u v) =snucnvdnv snvcnudnu1k2sn2usn2v,
22.8.2 cn(u v) =cnucnvsnudnusnvdnv1k2sn2usn2v,
22.8.3 dn(u v) =dnudnvk2snucnusnvcnv1k2sn2usn2v.
22.8.4 cd(u v)=cducdvk2sdundusdvndv1 k2k2sd2usd2v,
22.8.5 sd(u v) =sducdvndv sdvcdundu1 k2k2sd2usd2v,
22.8.6 nd(u v) =ndundv k2sducdusdvcdv1 k2k2sd2usd2v,
22.8.7 dc(u v) =dcudcv k2scuncuscvncv1k2sc2usc2v,
22.8.8 nc(u v) =ncuncv scudcuscvdcv1k2sc2usc2v,
22.8.9 sc(u v) =scudcvncv scvdcuncu1k2sc2usc2v,
22.8.10 ns(u v) =nsudsvcsvnsvdsucsucs2vcs2u,
22.8.11 ds(u v) =dsucsvnsvdsvcsunsucs2vcs2u,
22.8.12 cs(u v) =csudsvnsvcsvdsunsucs2vcs2u.

See also Carlson (2004).

§22.8(ii) Alternative Forms for Sum of Two Arguments

For u,v, and with the common modulus k suppressed:

22.8.13 sn(u v) =sn2usn2vsnucnvdnvsnvcnudnu,
22.8.14 sn(u v) =snucnudnv snvcnvdnucnucnv snudnusnvdnv,
22.8.15 cn(u v) =snucnudnvsnvcnvdnusnucnvdnvsnvcnudnu,
22.8.16 cn(u v) =1sn2usn2v k2sn2usn2vcnucnv snudnusnvdnv,
22.8.17 dn(u v) =snucnvdnusnvcnudnvsnucnvdnvsnvcnudnu,
22.8.18 dn(u v) =cnudnucnvdnv k2snusnvcnucnv snudnusnvdnv.

See also Carlson (2004).

§22.8(iii) Special Relations Between Arguments

In the following equations the common modulus k is again suppressed.

Let

22.8.19 z1 z2 z3 z4=0.

Then

22.8.20 |snz1cnz1dnz11snz2cnz2dnz21snz3cnz3dnz31snz4cnz4dnz41|=0,

and

22.8.21 k2k2k2snz1snz2snz3snz4 k2cnz1cnz2cnz3cnz4dnz1dnz2dnz3dnz4=0.

A geometric interpretation of (22.8.20) analogous to that of (23.10.5) is given in Whittaker and Watson (1927, p. 530).

Next, let

22.8.22 z1 z2 z3 z4=2K(k).

Then

22.8.23 |snz1cnz1cnz1dnz1cnz1dnz1snz2cnz2cnz2dnz2cnz2dnz2snz3cnz3cnz3dnz3cnz3dnz3snz4cnz4cnz4dnz4cnz4dnz4|=0.

For these and related identities see Copson (1935, pp. 415–416).

If sums/differences of the zj’s are rational multiples of K(k), then further relations follow. For instance, if

22.8.24 z1z2=z2z3=23K(k),

then

22.8.25 (dnz2 dnz3)(dnz3 dnz1)(dnz1 dnz2)dnz1 dnz2 dnz3

is independent of z1, z2, z3. Similarly, if

22.8.26 z1z2=z2z3=z3z4=12K(k),

then

22.8.27 dnz1dnz3=dnz2dnz4=k.

Greenhill (1959, pp. 121–130) reviews these results in terms of the geometric poristic polygon constructions of Poncelet. Generalizations are given in §22.9.