18.14.1 | |||
, , , | |||
18.14.2 | |||
, , . | |||
18.14.3 | |||
, , . | |||
18.14.4 | |||
, . | |||
18.14.5 | |||
, , | |||
18.14.6 | |||
, . | |||
18.14.7 | |||
, . | |||
18.14.8 | |||
, . | |||
18.14.9 | |||
. | |||
For further inequalities see Abramowitz and Stegun (1964, §22.14).
18.14.10 | |||
. | |||
Let . Then
18.14.11 | |||
, . | |||
18.14.12 | |||
, . | |||
18.14.13 | |||
. | |||
Let the maxima , , of in be arranged so that
18.14.14 | |||
When choose so that
18.14.15 | |||
Then
18.14.16 | ||||
18.14.17 | ||||
. | ||||
Also,
18.14.18 | |||
, , | |||
18.14.19 | |||
, , | |||
except that when (Chebyshev case) is constant.
Let the maxima , , of in be arranged so that
18.14.21 | |||
When choose so that
18.14.22 | |||
Then
18.14.23 | ||||
Also, when
18.14.24 | |||
The successive maxima of form a decreasing sequence for , and an increasing sequence for .
18.14.27 | |||
, , . | |||