About the Project
18 Orthogonal PolynomialsClassical Orthogonal Polynomials

§18.14 Inequalities

Contents
  1. §18.14(i) Upper Bounds
  2. §18.14(ii) Turán-Type Inequalities
  3. §18.14(iii) Local Maxima and Minima
  4. §18.14(iv) Positive Sums

§18.14(i) Upper Bounds

Jacobi

18.14.1 |Pn(α,β)(x)|Pn(α,β)(1)=(α 1)nn!,
1x1, αβ>1, α12,
18.14.2 |Pn(α,β)(x)||Pn(α,β)(1)|=(β 1)nn!,
1x1, βα>1, β12.
18.14.3 (12(1x))12α 14(12(1 x))12β 14|Pn(α,β)(x)|Γ(max(α,β) n 1)π12n!(n 12(α β 1))max(α,β) 12,
1x1, 12α12, 12β12.
18.14.3_5 (12(1 x))β/2|Pn(α,β)(x)|Pn(α,β)(1)=(α 1)nn!,
1x1, α,β0.

Equations (18.14.3) and (18.14.3_5) are Bernstein-type inequalities. For further inequalities of this type see Koornwinder et al. (2018, §1) and references given there.

Ultraspherical

18.14.4 |Cn(λ)(x)|Cn(λ)(1)=(2λ)nn!,
1x1, λ>0.
18.14.5 |C2m(λ)(x)||C2m(λ)(0)|=|(λ)mm!|,
1x1, 12<λ<0,
18.14.6 |C2m 1(λ)(x)|<2(λ)m 1((2m 1)(2λ 2m 1))12m!,
1x1, 12<λ<0.
18.14.7 (n λ)1λ(1x2)12λ|Cn(λ)(x)|<21λΓ(λ),
1x1, 0<λ<1.

Laguerre

18.14.8 e12x|Ln(α)(x)|Ln(α)(0)=(α 1)nn!,
0x<, α0.

Hermite

18.14.9 1(2nn!)12e12x2|Hn(x)|1,
<x<.

For further inequalities see Abramowitz and Stegun (1964, §22.14).

§18.14(ii) Turán-Type Inequalities

Legendre

18.14.10 (Pn(x))2Pn1(x)Pn 1(x),
1x1.

Jacobi

Let Rn(x)=Pn(α,β)(x)/Pn(α,β)(1). Then

18.14.11 (Rn(x))2Rn1(x)Rn 1(x),
1x1, βα>1.

See Nikolov and Pillwein (2015) for a variant of (18.14.11) when α=β(1,0].

Laguerre

18.14.12 (Ln(α)(x))2Ln1(α)(x)Ln 1(α)(x),
0x<, α0.

Hermite

18.14.13 (Hn(x))2Hn1(x)Hn 1(x),
<x<.

§18.14(iii) Local Maxima and Minima

Jacobi

Let the maxima xn,m, m=0,1,,n, of |Pn(α,β)(x)| in [1,1] be arranged so that

18.14.14 1=xn,0<xn,1<<xn,n1<xn,n=1.

When (α 12)(β 12)>0 choose m so that

18.14.15 xn,m(βα)/(α β 1)xn,m 1.

Then

18.14.16 |Pn(α,β)(xn,0)| >|Pn(α,β)(xn,1)|>>|Pn(α,β)(xn,m)|,
|Pn(α,β)(xn,n)| >|Pn(α,β)(xn,n1)|>>|Pn(α,β)(xn,m 1)|,
α>12,β>12.
18.14.17 |Pn(α,β)(xn,0)| <|Pn(α,β)(xn,1)|<<|Pn(α,β)(xn,m)|,
|Pn(α,β)(xn,n)| <|Pn(α,β)(xn,n1)|<<|Pn(α,β)(xn,m 1)|,
1<α<12,1<β<12.

Also,

18.14.18 |Pn(α,β)(xn,0)|<|Pn(α,β)(xn,1)|<<|Pn(α,β)(xn,n)|,
α12, 1<β12,
18.14.19 |Pn(α,β)(xn,0)|>|Pn(α,β)(xn,1)|>>|Pn(α,β)(xn,n)|,
β12, 1<α12,

except that when α=β=12 (Chebyshev case) |Pn(α,β)(xn,m)| is constant.

Szegő–Szász Inequality

18.14.20 |Pn(α,β)(xn,nm)Pn(α,β)(1)|>|Pn 1(α,β)(xn 1,nm 1)Pn 1(α,β)(1)|,
α=β>12, m=1,2,,n.

For extensions of (18.14.20) see Askey (1990) and Wong and Zhang (1994a, b).

Laguerre

Let the maxima xn,m, m=0,1,,n1, of |Ln(α)(x)| in [0,) be arranged so that

18.14.21 0=xn,0<xn,1<<xn,n1<xn,n=.

When α>12 choose m so that

18.14.22 xn,mα 12xn,m 1.

Then

18.14.23 |Ln(α)(xn,0)| >|Ln(α)(xn,1)|>>|Ln(α)(xn,m)|,
|Ln(α)(xn,n1)| >|Ln(α)(xn,n2)|>>|Ln(α)(xn,m 1)|.

Also, when α12

18.14.24 |Ln(α)(xn,0)|<|Ln(α)(xn,1)|<<|Ln(α)(xn,n1)|.

Hermite

The successive maxima of |Hn(x)| form a decreasing sequence for x0, and an increasing sequence for x0.

§18.14(iv) Positive Sums

Jacobi

18.14.25 m=0n(λ 1)nm(nm)!(λ 1)mm!Pm(α,β)(x)Pm(β,α)(1)0,
x1, α βλ0, β12, n=0,1,.
18.14.26 m=0nPm(α,β)(x)Pm(β,α)(1)0,
x1, n=0,1,,

for α β0, β12 or α β2, β0. The case β=0 of (18.14.26) is the Askey–Gasper inequality (18.38.3).

Laguerre

18.14.27 m=0n(λ 1)nm(nm)!(λ 1)mm!(1)mLm(β)(x)Lm(β)(0)0,
x0,  β,λ12,  n=0,1,.