About the Project
10 Bessel FunctionsKelvin Functions

§10.61 Definitions and Basic Properties

Contents
  1. §10.61(i) Definitions
  2. §10.61(ii) Differential Equations
  3. §10.61(iii) Reflection Formulas for Arguments
  4. §10.61(iv) Reflection Formulas for Orders
  5. §10.61(v) Orders ±12

§10.61(i) Definitions

Throughout §§10.61–§10.71 it is assumed that x0, ν, and n is a nonnegative integer.

10.61.1 berνx ibeiνx=Jν(xe3πi/4)=eνπiJν(xeπi/4)=eνπi/2Iν(xeπi/4)=e3νπi/2Iν(xe3πi/4),
10.61.2 kerνx ikeiνx=eνπi/2Kν(xeπi/4)=12πiHν(1)(xe3πi/4)=12πieνπiHν(2)(xeπi/4).

When ν=0 suffices on ber, bei, ker, and kei are usually suppressed.

Most properties of berνx, beiνx, kerνx, and keiνx follow straightforwardly from the above definitions and results given in preceding sections of this chapter.

§10.61(ii) Differential Equations

10.61.3 x2d2wdx2 xdwdx(ix2 ν2)w=0,
w=berνx ibeiνx,berνx ibeiνxkerνx ikeiνx,kerνx ikeiνx.
10.61.4 x4d4wdx4 2x3d3wdx3(1 2ν2)(x2d2wdx2xdwdx) (ν44ν2 x4)w=0,
w=ber±νx,bei±νx,ker±νx,kei±νx.

§10.61(iii) Reflection Formulas for Arguments

In general, Kelvin functions have a branch point at x=0 and functions with arguments xe±πi are complex. The branch point is absent, however, in the case of berν and beiν when ν is an integer. In particular,

10.61.5 bern(x) =(1)nbernx,
bein(x) =(1)nbeinx.

§10.61(iv) Reflection Formulas for Orders

10.61.6 berνx =cos(νπ)berνx sin(νπ)beiνx (2/π)sin(νπ)kerνx,
beiνx =sin(νπ)berνx cos(νπ)beiνx (2/π)sin(νπ)keiνx.
10.61.7 kerνx =cos(νπ)kerνxsin(νπ)keiνx,
keiνx =sin(νπ)kerνx cos(νπ)keiνx.
10.61.8 bernx =(1)nbernx,beinx=(1)nbeinx,
kernx =(1)nkernx,keinx=(1)nkeinx.

§10.61(v) Orders ±12

10.61.9 ber12(x2) =234πx(excos(x π8)excos(xπ8)),
bei12(x2) =234πx(exsin(x π8) exsin(xπ8)).
10.61.10 ber12(x2) =234πx(exsin(x π8)exsin(xπ8)),
bei12(x2) =234πx(excos(x π8) excos(xπ8)).
10.61.11 ker12(x2) =kei12(x2)=234πxexsin(xπ8),
10.61.12 kei12(x2) =ker12(x2)=234πxexcos(xπ8).