You can run queries over your Google Search data to see how often your property appears in Google Search results, with what queries, whether from desktop or smartphones, and much more. You can use the results to improve your property's search performance, for example:
- See how your search traffic changes over time, where it's coming from, and what search queries are most likely to show your property.
- Learn which queries are made on smartphones, and use this to improve your mobile targeting.
- See which pages have the highest (and lowest) click-through rate from Google search results.
Search query data is exposed using the searchanalytics.query()
method. The query()
method exposes all the data available in the Performance report
in Search Console. Before running any queries, you should
read the Performance report documentation to learn what data is exposed and what it means.
This page shows how to perform common queries with different request parameters.
Getting started
Verify the presence of data
Before running a query, you should first test for the presence of data in that time range. Omit filters, sorting, row limits, and any other parameters except start date, end date, and "date" as the only dimension.
Code
request = { 'startDate': flags.start_date, 'endDate': flags.end_date, 'dimensions': ['date'] }
Output
python search_analytics_api_sample.py 'https://www.example.com/' '2015-05-01' '2015-05-15' Available dates: Keys Clicks Impressions CTR Position 2015-05-01 22823.0 373911.0 0.0610385893969 8.1829472789 2015-05-02 16075.0 299718.0 0.0536337490574 8.14173322924 2015-05-03 18794.0 337759.0 0.055643224903 8.07772405769 2015-05-04 31894.0 468076.0 0.0681385074219 7.4104611217 2015-05-05 34392.0 482919.0 0.071216912153 7.20689805123 2015-05-06 35650.0 484353.0 0.0736033430164 7.11683214515 2015-05-07 33994.0 465812.0 0.0729779395979 6.91755472165 2015-05-08 27328.0 413007.0 0.0661683700276 7.22172747677 2015-05-09 16637.0 297302.0 0.0559599329974 8.01876206685 2015-05-10 19167.0 332607.0 0.0576265682923 7.87882696395 2015-05-11 35358.0 499888.0 0.070731843933 7.11701821208 2015-05-12 35952.0 486583.0 0.073886675038 6.80677294521 2015-05-13 34417.0 480777.0 0.071586203167 6.86552185317 2015-05-14 32029.0 457187.0 0.0700566726525 6.92575904389 2015-05-15 27071.0 415973.0 0.0650787430915 7.27105605412
Try different dates
We see that we have data for that segment of time, so it's safe to move forward. It's important to do this before running your actual query. For example, running this same query for a different range returns this:
python search_analytics_api_sample.py 'https://www.example.com/' '2015-06-01' '2015-06-15' Available dates: Keys Clicks Impressions CTR Position 2015-06-01 31897.0 468486.0 0.0680852789624 6.81207122518 2015-06-02 32975.0 460266.0 0.0716433540605 6.62658632433 2015-06-03 32779.0 459599.0 0.0713208688444 6.58126758326 2015-06-04 30116.0 435308.0 0.0691831990223 6.71409668557 2015-06-05 25188.0 380444.0 0.0662068530454 7.00998570092 2015-06-06 14829.0 272324.0 0.0544535186028 7.6309910254 2015-06-07 17896.0 318094.0 0.056260099216 7.56606223318 2015-06-08 33377.0 487274.0 0.0684973957158 6.77552260125 2015-06-09 33885.0 484241.0 0.0699754874123 6.70545451542 2015-06-10 32622.0 466250.0 0.0699667560322 6.64417372654 2015-06-11 31317.0 447306.0 0.0700124746818 6.61534832978 2015-06-12 25932.0 393791.0 0.065852190629 7.15718998149 2015-06-13 15451.0 275493.0 0.0560849095984 7.69994518917 2015-06-14 18358.0 318193.0 0.0576945438775 7.34048517724
Look carefully, and you'll notice that the data ends on the 14th; no data for the 15th.
You might find it useful to use the APIs explorer in free-form edit mode to test your queries quickly (click the dropdown arrow on the side of the request body field and click "Freeform editor").
After you've verified the range of valid dates, you can start grouping by other dimensions, adding filters, row count limits, and so on:
Top 10 queries, sorted by click count, descending
Code
request = { 'startDate': flags.start_date, 'endDate': flags.end_date, 'dimensions': ['query'], 'rowLimit': 10 }
Output
Top Queries: Keys Clicks Impressions CTR Position seo 3523.0 270741.0 0.0130124362398 5.86615252215 hreflang 3207.0 5496.0 0.583515283843 1.10080058224 robots.txt 2650.0 23005.0 0.115192349489 4.30367311454 301 redirect 2637.0 7814.0 0.337471205529 1.621192731 googlebot 2572.0 6421.0 0.400560660333 1.15823080517 google seo 2260.0 11205.0 0.201695671575 1.38295403838 google sitemap 1883.0 4288.0 0.439132462687 1.21175373134 canonical url 1882.0 3714.0 0.506731287022 1.12762520194 sitemap 1453.0 22982.0 0.06322339222 3.78074144983
Top 10 pages, sorted by click count, descending
Code
request = { 'startDate': flags.start_date, 'endDate': flags.end_date, 'dimensions': ['page'], 'rowLimit': 10 }
Output
Top Pages: Keys Clicks Impressions CTR Position https://www.example.com/21 10538.0 62639.0 0.168233847922 3.63031019014 https://www.example.com/65 9740.0 82375.0 0.118239757208 5.61003945372 https://www.example.com/15 9220.0 128101.0 0.0719744576545 5.32300294299 https://www.example.com/41 8859.0 426633.0 0.0207649197319 1.62309057199 https://www.example.com/53 8791.0 829679.0 0.0105956641062 14.4941887164 https://www.example.com/46 7390.0 82303.0 0.0897901656076 5.7723290767 https://www.example.com/27 7169.0 64013.0 0.111992876447 4.98709637105 https://www.example.com/80 6047.0 84233.0 0.0717889663196 4.10592048247 https://www.example.com/9 5886.0 59704.0 0.0985863593729 4.0897863801 https://www.example.com/8 5043.0 66869.0 0.0754161120998 4.57651527614
Top 10 queries in India, sorted by click count, descending
Note that the filter operator "equals" is omitted, as it is the default operator.
Code
request = { 'startDate': flags.start_date, 'endDate': flags.end_date, 'dimensions': ['query'], 'dimensionFilterGroups': [{ 'filters': [{ 'dimension': 'country', 'expression': 'ind' }] }], 'rowLimit': 10 }
Output
Top queries in India: Keys Clicks Impressions CTR Position googlebot 250.0 429.0 0.582750582751 1.0 search console 238.0 34421.0 0.00691438366114 1.00101682113 dns error 189.0 850.0 0.222352941176 1.38470588235 google seo 165.0 552.0 0.298913043478 1.04166666667 canonical url 141.0 282.0 0.5 1.0 301 redirect 132.0 557.0 0.236983842011 1.78276481149 google search console 126.0 16898.0 0.00745650372825 1.03929459108 robots.txt 117.0 1046.0 0.111854684512 3.9206500956 canonical tag 111.0 223.0 0.497757847534 1.0
Top 10 mobile queries in India, sorted by click count, descending
Code
request = { 'startDate': flags.start_date, 'endDate': flags.end_date, 'dimensions': ['query'], 'dimensionFilterGroups': [{ 'filters': [{ 'dimension': 'country', 'expression': 'ind' }, { 'dimension': 'device', 'expression': 'MOBILE' }] }], 'rowLimit': 10 }
Output
Top mobile queries in India: Keys Clicks Impressions CTR Position search console 26.0 1004.0 0.0258964143426 1.00298804781 dns error 24.0 111.0 0.216216216216 1.27927927928 google seo 18.0 69.0 0.260869565217 1.02898550725 eliminar 16.0 134.0 0.119402985075 1.0 googlebot 11.0 24.0 0.458333333333 1.0 404 9.0 214.0 0.0420560747664 8.64018691589 robots.txt 9.0 40.0 0.225 4.025 google search console 8.0 438.0 0.0182648401826 1.04337899543 seo 8.0 111.0 0.0720720720721 4.96396396396
Query a slice of rows
You can query for a specific slice of rows by specifying a (zero-based) start row number and the number of rows to return. Specifying an invalid start row number will return an error, but specifying more rows than are available will return all available rows.
Top 11-20 mobile queries for the date range, sorted by click count, descending
Code
request = { 'startDate': flags.start_date, 'endDate': flags.end_date, 'dimensions': ['query'], 'dimensionFilterGroups': [{ 'filters': [{ 'dimension': 'device', 'expression': 'mobile' }] }], 'rowLimit': 10, 'startRow': 10 }
Output
Top 11-20 Mobile Queries: Keys Clicks Impressions CTR Position dns error 1220.0 15064.0 0.0809877854 3.13448726206 google seo 1161.0 7923.0 0.146535403 2.31479556195 sitemap 926.0 12478.0 0.0742106107 5.8130025067 googlebot 903.0 7822.0 0.115443621 4.6910285792 robots.txt 799.0 24868.0 0.0321296445 5.92759215963 404 520.0 12777.0 0.0406981295 5.80352636506 seo 506.0 2925.0 0.172991453 2.50413960996 search console 487.0 981.0 0.496432212 1.00036102455 canonical url 326.0 4087.0 0.0797651089 3.23664971157 301 redirect 261.0 3165.0 0.082464455 3.63074363869
Getting more than 25,000 rows
If your query has more than 25,000 rows of data, you can request data in batches of 25,000 rows at a time by sending multiple queries and incrementing the startRow value each time. Count the number of retrieved rows; if you get less than the number of rows requested, you have retrieved all the data. If your request ends exactly on the data boundary (for example, there are 25,000 rows and you requested startRow=0 and rowLimit=25000), on your next call you will get an empty response.
Top 1-25,000 mobile queries for the date range, sorted by click count, descending
Code
request = { 'startDate': flags.start_date, 'endDate': flags.end_date, 'dimensions': ['query'], 'dimensionFilterGroups': [{ 'filters': [{ 'dimension': 'device', 'expression': 'mobile' }] }], 'rowLimit': 25000, 'startRow': 0 }
Top 25,001-50,000 mobile queries for the date range, sorted by click count, descending
Code
request = { 'startDate': flags.start_date, 'endDate': flags.end_date, 'dimensions': ['query'], 'dimensionFilterGroups': [{ 'filters': [{ 'dimension': 'device', 'expression': 'mobile' }] }], 'rowLimit': 25000, 'startRow': 25000 }