Satz von Borsuk-Ulam

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen

Der Satz von Borsuk-Ulam besagt, dass jede stetige Funktion von einer -Sphäre in den -dimensionalen euklidischen Raum ein Paar von antipodalen Punkten auf denselben Punkt abbildet. (Zwei Punkte einer Sphäre heißen antipodal, wenn sie in genau entgegengesetzten Richtungen vom Mittelpunkt liegen.)

Der Fall wird oft dadurch erläutert, dass zu jedem Zeitpunkt ein Paar von antipodalen Punkten auf der Erdoberfläche mit gleichen Temperaturen und gleichem Luftdruck existieren. Dies setzt voraus, dass Temperatur und Luftdruck stetige Funktionen sind.

Der Satz von Borsuk-Ulam wurde von Stanisław Ulam vermutet und 1933 durch Karol Borsuk bewiesen. Es ist möglich, aus dem Satz von Borsuk-Ulam auf elementare Weise den brouwerschen Fixpunktsatz herzuleiten. Es gibt verschiedene Verallgemeinerungen des Satzes, so dass man von Sätzen vom Borsuk-Ulam-Typ spricht.

Es gibt verschiedene äquivalente Formulierungen des Satzes:[1]

  • Sei eine stetige antipodale Abbildung, dann ist . Dabei bedeutet antipodal, dass für alle gilt.
  • Sei eine stetige antipodale Abbildung. Dann gibt es ein mit
  • Sei eine stetige Abbildung. Dann gibt es einen Punkt mit . Dies ist die Formulierung in der Einleitung.
  • Wird die n-Sphäre durch (n 1) offene oder abgeschlossene Untermengen der n-Sphäre überdeckt, enthält mindestens eines der ein antipodales Paar von Punkten.

Borsukscher Antipodensatz

[Bearbeiten | Quelltext bearbeiten]

Eine stärkere Aussage ist der Satz von Borsuk, der auch als Borsukscher Antipodensatz bekannt ist. Man nennt eine Funktion antipodenerhaltend, wenn sie ungerade ist.

Ist eine symmetrische, offene und beschränkte Teilmenge des , welche den Nullpunkt enthält, und stetig und antipodenerhaltend, das heißt für alle , sowie . Dann ist der Brouwersche Abbildungsgrad eine ungerade Zahl.

Weitere Verallgemeinerungen

[Bearbeiten | Quelltext bearbeiten]
  • Anstatt zu fordern, dass antipodenerhaltend ist, reicht es
und zu fordern. Funktionen, die dies erfüllen, sind homotop zu einer antipodenerhaltenden Funktion, was für den Beweis des Borsukschen Satzes ausreicht. Insbesondere gibt es keine stetige Fortsetzung von auf mit . Denn ist der Brouwersche Abbildungsgrad ungleich null, dann hat die Gleichung mindestens eine Lösung .
  • Die Aussage kann man auch auf unendlichdimensionale normierte Räume verallgemeinern. Dabei sei eine symmetrische, offene und beschränkte Teilmenge des normierten Raums , , wobei eine kompakte Abbildung ist, und
Dann ist der Leray-Schauder-Grad eine ungerade Zahl.

In der elementaren Geometrie kann man mit der Aussage von Borsuk-Ulam folgende interessante Tatsache beweisen (auch bekannt als Satz von Stone-Tukey oder Ham sandwich theorem):

„Gegeben zwei beliebige Polygone in der Ebene. Dann existiert eine Gerade derart, dass diese den Flächeninhalt beider Polygone gleichzeitig halbiert (d.h. nicht nur in der Summe, sondern sogar beide für sich genommen).“

Beweis
Sei und bezeichne mit die vorgegebenen Polygone. Betrachte diese in der verschobenen --Ebene , die wir im euklidischen Standardraum betrachten. Sei dann der Ortsvektor eines Punktes auf der Einheitssphäre und bezeichne mit die Normalenebene zu durch den Nullpunkt. Für definiert der Schnitt von mit eine Gerade . Mit dieser Gerade können Abbildungen erklärt werden vermöge der stetigen Zuordnung: . Offenbar haben diese Abbildungen die Eigenschaft . Wenn das Maß eines Inhalts bezeichnet, kann mit der Definition eine weitere stetige Abbildung von erklärt werden. Borsuk-Ulam liefert dann für die Existenz eines Punktes mit . Nach Konstruktion von gilt für diesen Punkt für beide . Damit ist die gesuchte Gerade aus der Behauptung.

Weitere Anwendungen findet der Satz in der Topologischen Kombinatorik. Dort ist der Satz eng mit dem Lemma von Tucker verbunden und ist äquivalent dazu. Manchmal wird der Satz von Borsuk-Ulam dort in einer Variante bzw. Verallgemeinerung von Albrecht Dold benutzt.[2]

  • Karol Borsuk: Drei Sätze über die -dimensionale euklidische Sphäre. Fundamenta Mathematicae 20 (1933), 177–190, Online
  • Klaus Deimling: Nonlinear Functional Analysis. 1. Auflage. Springer-Verlag, Berlin/Heidelberg 1985, ISBN 3-540-13928-1.
  • Wolfgang Gromes: Ein einfacher Beweis des Satzes von Borsuk. Mathematische Zeitschrift 178 (1981), 399–400, online.
  • Lasar Ljusternik, Lew Schnirelmann: Topological Methods in Variational Problems. Issledowatelskii Institut Matematiki i Mechaniki pri O. M. G. U., Moskau 1930 (russisch).
    Französische Übersetzung durch J. Kravtchenko: Méthodes topologiques dans les problèmes variationnels. 1ère partie. Espaces à un nombre fini de dimensions. Hermann & Cie., Paris 1934.
  • Jiří Matoušek: Using the Borsuk-Ulam theorem. Springer-Verlag, Berlin 2003, ISBN 3-540-00362-2.

Einzelnachweise

[Bearbeiten | Quelltext bearbeiten]
  1. Mark de Longueville, A course in topological combinatorics, Springer 2013, S. 12
  2. Dold, Simple proofs of the Borsuk-Ulam results, Contemporary Mathematics, Band 19, 1983, S. 65–69