Kern (Algebra)
Der Kern einer Abbildung dient in der Algebra dazu, anzugeben, wie stark die Abbildung von der Injektivität abweicht. Dabei ist die genaue Definition abhängig davon, welche algebraischen Strukturen betrachtet werden. So besteht beispielsweise der Kern einer linearen Abbildung zwischen Vektorräumen und aus denjenigen Vektoren in , die auf den Nullvektor in abgebildet werden; er ist also die Lösungsmenge der homogenen linearen Gleichung und wird hier auch Nullraum genannt. In diesem Fall ist genau dann injektiv, wenn der Kern nur aus dem Nullvektor in besteht. Analoge Definitionen gelten für Gruppen- und Ringhomomorphismen. Der Kern ist von zentraler Bedeutung im Homomorphiesatz.
Definition
[Bearbeiten | Quelltext bearbeiten]- Ist ein Gruppenhomomorphismus, so wird die Menge
- aller Elemente von , die auf das neutrale Element von abgebildet werden, Kern von genannt. Er ist ein Normalteiler in .
- Ist eine lineare Abbildung von Vektorräumen (oder allgemeiner ein Modulhomomorphismus), dann heißt die Menge
- der Kern von . Er ist ein Untervektorraum (allgemeiner ein Untermodul) von .
- Ist ein Ringhomomorphismus, so ist die Menge
- der Kern von . Er ist ein zweiseitiges Ideal in .
Im Englischen wird statt auch oder (für engl. kernel) geschrieben.
Bedeutung
[Bearbeiten | Quelltext bearbeiten]Der Kern eines Gruppenhomomorphismus enthält immer das neutrale Element, der Kern einer linearen Abbildung enthält immer den Nullvektor. Enthält er nur das neutrale Element bzw. den Nullvektor, so nennt man den Kern trivial.
Eine lineare Abbildung bzw. ein Homomorphismus ist genau dann injektiv, wenn der Kern nur aus dem Nullvektor bzw. dem neutralen Element besteht (also trivial ist).[1]
Der Kern ist von zentraler Bedeutung im Homomorphiesatz.[2]
Beispiel (lineare Abbildung von Vektorräumen)
[Bearbeiten | Quelltext bearbeiten]Wir betrachten die lineare Abbildung , die durch
definiert ist. Die Abbildung bildet genau die Vektoren der Form
auf den Nullvektor ab und andere nicht. Der Kern von ist also die Menge
- .
Geometrisch ist der Kern in diesem Fall eine Gerade (die -Achse) und hat demnach die Dimension 1. Die Dimension des Kerns wird auch als Defekt bezeichnet und kann mit Hilfe des Rangsatzes explizit berechnet werden.[1]
Verallgemeinerungen
[Bearbeiten | Quelltext bearbeiten]Universelle Algebra
[Bearbeiten | Quelltext bearbeiten]In der universellen Algebra ist der Kern einer Abbildung die durch induzierte Äquivalenzrelation auf , also die Menge . Wenn und algebraische Strukturen gleichen Typs sind (zum Beispiel und sind Verbände) und ein Homomorphismus von nach ist, dann ist die Äquivalenzrelation auch eine Kongruenzrelation. Umgekehrt zeigt man auch leicht, dass jede Kongruenzrelation Kern eines Homomorphismus ist. Die Abbildung ist genau dann injektiv, wenn die Identitätsrelation auf ist.
Kategorientheorie
[Bearbeiten | Quelltext bearbeiten]In einer Kategorie mit Nullobjekten ist ein Kern eines Morphismus der Differenzkern des Paares , das heißt charakterisiert durch die folgende universelle Eigenschaft:
- Für die Inklusion gilt .
- Ist ein Morphismus, so dass ist, so faktorisiert eindeutig über .
Abstrakter formuliert bedeutet das, dass der Kern sich aus dem universellen Morphismus vom Einbettungsfunktor von in zum entsprechenden Objekt ergibt.
Kokern
[Bearbeiten | Quelltext bearbeiten]Der Kokern, Alternativschreibweise Cokern, ist der duale Begriff zum Kern.
Ist eine lineare Abbildung von Vektorräumen über einem Körper, so ist der Kokern von der Quotient von nach dem Bild von .
Entsprechend ist der Kokern für Homomorphismen abelscher Gruppen oder Moduln über einem Ring definiert.
Der Kokern mit der Projektion erfüllt die folgende universelle Eigenschaft: Jeder Homomorphismus , für den gilt, faktorisiert eindeutig über und es gilt . Er ergibt sich in einer Kategorie mit Nullobjekten aus dem universellen Morphismus vom entsprechenden Objekt zum Einbettungsfunktor von in .
Diese Eigenschaft ist auch die Definition für den Kokern in beliebigen Kategorien mit Nullobjekten. In abelschen Kategorien stimmt der Kokern mit dem Quotienten nach dem Bild überein.
Literatur
[Bearbeiten | Quelltext bearbeiten]- Tilo Arens, Rolf Busam, Frank Hettlich, Christian Karpfinger, Hellmuth Stachel: Grundwissen Mathematikstudium - Analysis und Lineare Algebra mit Querverbindungen: Analysis und Lineare Algebra mit Querverbindungen. Springer Spektrum, Berlin, Heidelberg 2013, S. 74f, S. 425f, doi:10.1007/978-3-8274-2309-2.
- Kenneth Kuttler: A First Course in Linear Algebra. libretexts.org, 5.7 (englisch, The Kernel and Image of A Linear Map).
- Serlo: Mathe für Nicht-Freaks: Lineare Algebra 1. WikiBooks (Kern einer linearen Abbildung).
Einzelnachweise
[Bearbeiten | Quelltext bearbeiten]- ↑ a b Tim Netzer: Lineare Algebra. (pdf) In: Universität Innsbruck. 222, abgerufen am 15. September 2023.
- ↑ Jessica K. Sklar: A First Course in Linear Algebra. libretexts.org, 9.1 (englisch, The_First_Isomorphism_Theorem).