Unifikation (Logik)
Unifikation ist eine Methode zur Vereinheitlichung prädikatenlogischer Ausdrücke. Zwei Ausdrücke werden unifiziert, indem ihre Variablen so durch geeignete Terme ersetzt werden, dass die resultierenden Ausdrücke gleich sind. Die Unifikation hat insbesondere in der Computerlogik und Computerlinguistik eine größere Bedeutung erlangt. So nutzt etwa die Inferenzmaschine des Prolog-Interpreters Unifikation. In der Computerlinguistik gibt es sogenannte Unifikationsgrammatiken, die sich auf dieses Konzept stützen. Auch beim Theorembeweisen spielt Unifikation eine große Rolle.
Als Basisoperation liegt der Unifikation die Substitution zu Grunde. Im Rahmen der Prädikatenlogik bedeutet eine Substitution σ innerhalb eines gegebenen Ausdrucks die Ersetzung einer Variablen durch einen Term, in dem diese Variable nicht vorkommen darf. Die Variable wird gewissermaßen durch den Term „instanziiert“.
Wird eine Menge von Ausdrücken durch eine Substitution σ zu einem äquivalenten Ausdruck substituiert, d. h. , so bezeichnet man σ als Unifikator dieser Ausdrucksmenge. Die Anwendung eines Unifikators auf diese Menge bezeichnet man als Unifikation. Nicht alle Ausdrucksmengen können unifiziert werden.
Beispiel
BearbeitenGegeben seien die Ausdrücke und . Großbuchstaben stehen dabei für Variablen und Kleinbuchstaben für atomare Ausdrücke.
Ersetzt man in nun durch , durch und in durch , so sind sie gleich oder unifiziert. Man erhält
mit
- .
Kleinster gemeinsamer Unifikator
BearbeitenZu einer Menge von Ausdrücken existieren gewöhnlich mehrere Unifikatoren. Man nennt einen Unifikator kleinster gemeinsamer Unifikator oder allgemeinster Unifikator, wenn es für jeden anderen Unifikator eine Substitution gibt mit . Dieser ist natürlich nicht notwendigerweise eindeutig.
Mittels des Algorithmus von Robinson nach John Alan Robinson kann man zu unifizierbaren Ausdrücken einen kleinsten gemeinsamen Unifikator finden.
Unifikationsalgorithmus
BearbeitenEs folgt eine Darstellung des Unifikationsalgorithmus in Pseudocode:
Eingabe: Menge von Ausdrücken A Ausgabe: allgemeinster Unifikator sub
sub := ∅ while |sub(A)| > 1 do begin Durchsuche die Ausdrücke sub(A) von links nach rechts, bis die erste Position gefunden ist, wo sich zwei Ausdrücke in einem Zeichen unterscheiden. if keines der beiden Zeichen ist eine Variable then Gib "nicht unifizierbar" aus. STOP else begin Sei X die Variable und t der im anderen Ausdruck beginnende Term (kann auch Variable sein) if X kommt in t vor then Gib "nicht unifizierbar" aus. STOP else sub := sub[X/t] (sub und [X/t] werden hintereinander ausgeführt) end end Gib sub aus.
Literatur
Bearbeiten- John Alan Robinson: A Machine-Oriented Logic Based on the Resolution Principle. In: Journal of the ACM, Band 12 (1965), Heft 1, Seiten 35–41, ISSN 1557-735X
- Michael M. Richter: Prinzipien der Künstlichen Intelligenz. Wissensrepräsentation, Inferenz und Expertensysteme (= Leitfaden und Monographien der Informatik). Teubner Verlag, Stuttgart 1996. ISBN 3-519-12269-3.
- Uwe Schöning: Logik für Informatiker. Spektrum Akademischer Verlag, Berlin 2005, ISBN 3-8274-1005-3, Seiten 90–93.
- Franz Baader, Wayne Snyder: Theory (PDF; 677 kB). In: Handbook of Automated Deduction, Kapitel 8. Springer Verlag, Berlin 2001, Seiten 445–533.