Regulärer Raum

spezielle topologische Räume, in denen jede abgeschlossene Teilmenge A und jeder nicht in A liegende Punkt x durch Umgebungen getrennt sind

In der Topologie und verwandten Gebieten der Mathematik sind reguläre Räume spezielle topologische Räume, in denen jede abgeschlossene Teilmenge A und jeder nicht in A liegende Punkt x durch Umgebungen getrennt sind.

Ein T3-Raum ist ein regulärer Raum, der außerdem ein Hausdorff-Raum ist.

Definition

Bearbeiten

Sei   ein topologischer Raum. Zwei Teilmengen   und   von   heißen durch Umgebungen getrennt, falls disjunkte offene Mengen   und   mit   und   existieren.

  heißt regulärer Raum, falls jede abgeschlossene Menge   und jeder Punkt   durch Umgebungen   von   sowie   von   getrennt sind, also mit  .

Hinweis: In der Literatur ist die Bezeichnung regulärer Raum und T3-Raum nicht eindeutig. Gelegentlich sind die Definitionen gegenüber der hier präsentierten Variante vertauscht.

Beispiele

Bearbeiten

Permanenz-Eigenschaften

Bearbeiten
  • Unterräume regulärer Räume sind wieder regulär.
  • Beliebige Produkte regulärer Räume sind wieder regulär.

Beziehungen zu anderen Trennungsaxiomen

Bearbeiten
  • Jeder reguläre Raum ist symmetrisch.[3]
  • Jeder reguläre Raum, der T0 erfüllt, erfüllt auch T2 und somit T1: Betrachte zwei Punkte   und  . Ohne Beschränkung der Allgemeinheit existiere eine offene Umgebung von  , die   nicht enthält (andernfalls vertausche die beiden Punkte). Ihr Komplement ist abgeschlossen und enthält  , aber nicht   und kann daher von   durch disjunkte Umgebungen getrennt werden, die somit auch   und   trennen.
  • Jeder reguläre Raum ist präregulär.
  • Jeder reguläre Raum ist außerdem halbregulär. Die regulär offenen Mengen bilden eine Basis eines regulären Raums. Diese Eigenschaft ist allerdings schwächer als die der Regularität. Das heißt, es gibt topologische Räume, deren regulär offene Mengen eine Basis bilden, aber die nicht regulär sind.
  • Ein topologischer Raum ist genau dann ein regulärer Raum, wenn der Kolmogoroff-Quotient KQ('X') das Trennungsaxiom T3 erfüllt.
  • Jeder vollständig reguläre Raum ist auch regulär, die Umkehrung gilt nicht, wie das Beispiel der Mysior-Ebene zeigt.
  • Erfüllt ein regulärer Raum das zweite Abzählbarkeitsaxiom, so ist er bereits normal und nach dem Metrisierbarkeitssatz von Urysohn pseudometrisierbar.
  • Jeder symmetrische normale Raum ist regulär.[4]

Äquivalente Charakterisierung

Bearbeiten

Ein topologischer Raum ist genau dann regulär, wenn jeder seiner Punkte eine Umgebungsbasis aus abgeschlossenen Mengen besitzt. Umgebungsbasis   eines Punktes   zu sein, bedeutet, dass man zu jeder Umgebung   eine Umgebung   mit   und   findet.

Der Sachverhalt lässt sich auch recht leicht allein mit den topologischen Grundbegriffen (Offenheit und Abschluss) ausdrücken, ohne dabei Umgebungen und Umgebungsbasen einführen zu müssen: Für jedes  ,   offen, findet man ein offenes   mit  .

Literatur

Bearbeiten

Einzelnachweise

Bearbeiten
  1. Boto von Querenburg: Mengentheoretische Topologie. 3., neu bearbeitete und erweiterte Auflage. Springer, Berlin u. a. 2001, ISBN 3-540-67790-9, S. 84 (eingeschränkte Vorschau in der Google-Buchsuche).
  2. Lynn Arthur Steen: Counterexamples in Topology. Courier Corporation, 1995, ISBN 978-0-486-68735-3, S. 100 (eingeschränkte Vorschau in der Google-Buchsuche).
  3. René Bartsch: Allgemeine Topologie. Walter de Gruyter GmbH & Co KG, 2015, ISBN 978-3-11-040618-4, S. 118.
  4. René Bartsch: Allgemeine Topologie. Walter de Gruyter GmbH & Co KG, 2015, ISBN 978-3-11-040618-4, S. 122.