Poincaré-Gruppe

Gruppe in der Mathematik

Die Poincaré-Gruppe (benannt nach dem französischen Mathematiker und Physiker Henri Poincaré[1]) ist eine spezielle Gruppe in der Mathematik, die Anwendungen in der Physik gefunden hat. In älteren Publikationen wird auch von der "inhomogenen Lorentzgruppe" gesprochen.[2][3]

Historisches

Bearbeiten

Die Poincaré-Gruppe taucht historisch zum ersten Mal bei der Untersuchung der Invarianzen der Elektrodynamik durch Poincaré, Lorentz und andere auf und spielte eine entscheidende Rolle bei der Formulierung der speziellen Relativitätstheorie.[4] Insbesondere wurde die Poincaré-Gruppe nach der Formalisierung der Relativitätstheorie durch Hermann Minkowski zu einer wichtigen mathematischen Struktur in allen relativistischen Theorien,[5][6] darunter in der Quantenelektrodynamik bzw. Quantenfeldtheorie.[7]

Geometrische Definition

Bearbeiten

Die Poincaré-Gruppe ist die affine Invarianzgruppe des pseudo-euklidischen Minkowskiraumes  , insbesondere ist der Minkowskiraum bezüglich der Poincaré-Gruppe ein homogener Raum, dessen Geometrie sie im Sinne des Erlanger Programms definiert. Sie unterscheidet sich von der Lorentz-Gruppe, die die lineare Invarianzgruppe des Minkowskiraums ist, durch die Hinzunahme von Translationen. Sie ähnelt daher in ihrer Struktur der euklidischen Gruppe im dreidimensionalen Raum, die alle geometrischen Kongruenzabbildungen enthält. Tatsächlich ist die Euklidische Gruppe als Untergruppe in der Poincaré-Gruppe enthalten. Der wesentliche Unterschied besteht jedoch darin, dass die Poincaré-Gruppe nicht die Längen und Winkel im dreidimensionalen Raum erhält, sondern die bezüglich des indefiniten Pseudo-Skalarprodukts im Minkowskiraum definierten Längen und Winkel. Insbesondere erhält sie sogenannte Eigenzeitabstände in der speziellen Relativitätstheorie.

Algebraische Definition

Bearbeiten

Die Poincaré-Gruppe ist das semidirekte Produkt der Lorentzgruppe   und der Gruppe der Translationen im  . Jedes Element der Poincaré-Gruppe ist also als Paar

 

darstellbar, und die Gruppenmultiplikation ist durch

 

gegeben, wobei die Lorentztransformation   in ihrer natürlichen Wirkung als Automorphismus auf   wirkt.

Weitere Eigenschaften

Bearbeiten

Die Poincaré-Gruppe ist eine 10-dimensionale nicht-kompakte Liegruppe. Sie ist ein Beispiel einer nicht halbeinfachen Gruppe.

Die Lie-Algebra der Poincaré-Gruppe wird durch die folgenden Relationen definiert:[8]

 

wobei   die vier infinitesimalen Erzeuger der Translationen und   die sechs infinitesimalen Erzeuger der Lorentz-Transformationen sind.

Die beiden Casimir-Operatoren der Poincaré-Gruppe, die mit allen Generatoren vertauschen, sind

 

Physikalisch sind dies das Quadrat des Viererimpulses   und das Quadrat des Pauli-Lubanski-Pseudovektors  .[8] Der Faktor   ist Konvention.

Literatur

Bearbeiten

Einzelnachweise

Bearbeiten
  1. Henri Poincaré: Sur la dynamique de l‘électron. In: Rendiconti del Circolo matematico di Palermo. Band 21, 1906, S. 129–176 (französisch, wikisource.org).
  2. Hans Joos: Zur Darstellungstheorie der inhomogenen Lorentzgruppe als Grundlage quantenmechanischer Kinematik. In: Fortschritte der Physik. Band 10, Nr. 3, 1962, S. 65–146, doi:10.1002/prop.2180100302 (wiley.com [abgerufen am 20. April 2023]).
  3. E. Wigner: On unitary representations of the inhomogeneous lorentz group. In: Nuclear Physics B - Proceedings Supplements. Band 6, März 1989, S. 9–64, doi:10.1016/0920-5632(89)90402-7 (englisch, elsevier.com [abgerufen am 20. April 2023]).
  4. Arthur I. Miller: A Study of Henri Poincaré’s “Sur la Dynamique de l’Électron”. In: Frontiers of Physics: 1900–1911. Birkhäuser Boston, Boston, MA 1973, ISBN 978-0-8176-3203-8, S. 29–150, doi:10.1007/978-1-4684-0548-4_2 (englisch, springer.com [abgerufen am 22. März 2023]).
  5. Hermann Minkowski: Die Grundgleichungen für die elektromagnetischen Vorgänge in bewegten Körpern. In: Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen. Band 1908, 1908, S. 52–111 (wikisource.org).
  6. Hermann Minkowski: Die Grundgleichungen für die elektromagnetischen Vorgänge in bewegten Körpern. In: Mathematische Annalen. Band 68, Nr. 4, Dezember 1910, ISSN 0025-5831, S. 472–525, doi:10.1007/BF01455871 (springer.com [abgerufen am 22. März 2023]).
  7. Steven Weinberg: The Quantum Theory of Fields I. 1. Auflage. Cambridge University Press, 1995, ISBN 978-0-521-67053-1, doi:10.1017/cbo9781139644167 (englisch, cambridge.org [abgerufen am 22. März 2023]).
  8. a b Jakob Schwichtenberg: Durch Symmetrie die moderne Physik verstehen: Ein neuer Zugang zu den fundamentalen Theorien. 1. Auflage. Springer Spektrum, 2017, ISBN 978-3-662-53811-1, S. 93–95.