Ein lokales Martingal ist ein adaptierter rechtsstetiger stochastischer Prozess auf einem filtrierten Wahrscheinlichkeitsraum , so dass eine aufsteigende Folge von Stoppzeiten mit fast sicher existiert, so dass der gestoppte Prozess

für alle ein -Martingal ist.

Der Begriff des lokalen Martingals ist eine weitreichende Verallgemeinerung des Martingalbegriffes. Es handelt sich also um eine Lokalisierung des Martingalbegriffs. Lokale Martingale spielen eine Rolle in der Theorie der stochastischen Integration, genauer entspricht die Klasse der möglichen Integratoren den Semimartingalen, Summen von lokalen Martingalen und adaptierten Prozessen von endlicher Variation.

Lokale Martingale vs. Martingale

Bearbeiten

Beschränkte lokale Martingale sind Martingale. Es gibt Beispiele von gleichmäßig integrierbaren lokalen Martingalen, welche aber keine Martingale sind. Allgemein gilt:

Definiere die Klasse   derjenigen adaptierteren  -Prozessen, so dass für alle   und alle Stoppzeiten   mit   die Familie   gleichmäßig integrierbar ist. Ein lokales Martingal ist genau dann ein Martingal, wenn es in der Klasse   liegt.[1]

Ein Beispiel für ein lokales Martingal, das kein Martingal ist, ist der folgende Prozess  . Seien   und   stochastisch unabhängig mit   und   und   Rademacher-verteilt, sprich  . Die Filtration ist gegeben durch  ,   und  . Definiere   und  .   ist dann kein Martingal, weil   nicht integrierbar ist, aber ein lokales Martingal mit der Lokalisierungsfolge  .[2]

Literatur

Bearbeiten
  • Daniel Revuz, Marc Yor: Continuous Martingales and Brownian motion. Springer-Verlag, New York 1999, ISBN 3-540-64325-7.

Einzelnachweise

Bearbeiten
  1. Daniel Revuz und Marc Yor: Continuous Martingales and Brownian Motion. In: Springer (Hrsg.): Grundlehren der mathematischen Wissenschaften. Band 293, 1999, S. 119–137 (englisch).
  2. Christoph Kühn: Vorlesungsskript ,,Stochastische Finanzmathematik”. Mai 2023, S. 54–55 (uni-frankfurt.de [PDF]).