Die G-Parität ist eine multiplikative Quantenzahl, die die Werte 1 und −1 annehmen kann. Sie verallgemeinert die C-Parität auf Teilchenmultipletts.

Dies ist sinnvoll, da die C-Parität nur für neutrale Systeme definiert ist (so hat z. B. im Pionen-Triplett nur das π0 C-Parität), die starke Wechselwirkung jedoch unabhängig von der elektrischen Ladung wirkt (gleichermaßen auf π0, π und π ).

Da die G-Parität jeweils auf ein ganzes Multiplett angewendet wird, sieht die Ladungskonjugation das Multiplett als ein neutrales Ganzes. Daher können nur Multipletts mit mittleren Ladungen von 0 Eigenzustände von G sein, d. h. nur Multipletts, für die gilt:

mit der elektrischen Ladung , der Baryonenzahl und der Hyperladung .

Formulierung mit Operatoren

Bearbeiten
 

Hierbei sind ηG die Eigenwerte der G-Parität (für Pionen im Speziellen ist  ).

Der Operator   der G-Parität ist definiert als:

 

mit dem Operator   der C-Parität und der zweiten Komponente   des Isospins. Damit ist die G-Parität eine Kombination aus Ladungskonjugation und einer 180°-Drehung um die 2-Achse im Isospin-Raum.

Formulierung mit Eigenwerten

Bearbeiten

Allgemein gilt

 

mit dem Eigenwert ηC der C-Parität und dem Isospin I.

Für Fermion-Antifermion-Systeme wird daraus

 

mit dem Gesamtspin S und der Gesamt-Drehimpulsquantenzahl L

und für Boson-Antiboson-Systeme

 .

Invarianz und Erhaltung

Bearbeiten

Die G-Parität ist invariant unter der starken Wechselwirkung, da diese sowohl Ladungskonjugation als auch Isospin erhält. Unter der elektromagnetischen und der schwachen Wechselwirkung ist die G-Parität jedoch nicht invariant.

Da es sich um eine multiplikative Quantenzahl handelt, ist die G-Parität für ein System aus n Pionen:

 .

Daraus ergibt sich für Prozesse, in denen nur Pionen auftauchen, eine interessante Konsequenz aus der Erhaltung von G: unter der starken Wechselwirkung kann sich die Anzahl der Pionen nur um eine gerade Zahl ändern.

Literatur

Bearbeiten
  • T. D. Lee and C. N. Yang: Charge conjugation, a new quantum number G, and selection rules concerning a nucleon-antinucleon system. In: Il Nuovo Cimento. 3. Jahrgang, Nr. 4, 1956, S. 749–753, doi:10.1007/BF02744530.
  • Charles Goebel: Selection Rules for NN̅ Annihilation. In: Phys. Rev. 103. Jahrgang, Nr. 1, 1956, S. 258–261, doi:10.1103/PhysRev.103.258.
  • Christoph Berger: Teilchenphysik – Eine Einführung. Springer, Berlin 1992, S. 110f, ISBN 978-3-540-54218-6